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Abstract 

This note explores the efficacy and drawbacks of moving from visual to symbolic in the 
teaching of school mathematics. It stems from the author’s experience working with prospective 
teachers in different mathematical education courses. In particular, the note demonstrates how the 
appropriate use of computing technology can overcome possible pitfalls associated with an 
uncritical use of computer-generated images of mathematical concepts. The importance of 
conceptual perspective on visual representations and the teacher’s role in helping students to 
develop such perspective are emphasized. 
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1. Introduction 

Mathematics, with its origins in the study of number and shape, has evolved from 
concrete activities to abstract concepts by means of argument and computation [4]. The first 
mathematical problems, as known from history, stemmed from the contexts of counting using 
“the principle of one-for-one correspondence … without a need for names for numbers” [19, p. 
31]. Later, the physical manipulation of objects and visual argumentation regarding the 
relationship among the objects led to the need for names describing specific properties of 
numbers. For example, “being ancient even in Plato’s time [380 B. C.] … [was the game of] 
guessing odd or even with respect to the number of coins or other objects held in hand” [22, p. 
16] and a geometric term gnomon, resembling a sundial (an instrument that determines the time 
of the day by the position of the Sun), was used to refer to an odd number because of its double 
plus one form. Over the centuries, the development of mathematical knowledge evolved by 
taking into account the primordial nature of concrete objects including geometric shapes over the 
secondary nature of words and other signs that describe specific combinations and properties of 
those objects. In the words of Vygotsky, mathematical knowledge had been developed through 
the transition from dealing with the “first-order symbols … directly denoting objects or actions 
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…[to] the second order symbolism, which involves the creation of written signs for the spoken 
symbols of words” [24, p. 115]. Just as the teaching of writing was recommended to “be arranged 
by shifting the child’s activity from drawing things to drawing speech” [24, p. 115], the teaching 
of mathematics can be arranged as a transition from seeing and acting on concrete objects to 
describing the visual and the physical through culturally accepted mathematical notation.  

To this end, the “we write what we see” (W4S) principle can be proposed as a didactic 
motto to be used in the teaching of mathematics. We see differences and similarities when 
dealing with geometric figures or their images and appreciate different terminology to describe 
them [16]; we see a relationship (known as the triangle inequality) among the lengths of three 
straws when trying to construct a triangle that doesn’t (or does) allow for such a construction [2]; 
we see within a numeric table that the sum of two consecutive triangular numbers is the square of 
the rank of the larger number, an observation used in the 18th century by a Dutch minister of 
church and mathematics teacher Élie de Joncourt to compute squares and square roots [18]. There 
are plenty examples of that kind in school mathematics and beyond.  

Yet, the W4S principle works not without reservations. Although the avowal “I see” often 
confirms understanding, mathematical visualization, as Tall put it, “has served us both well and 
badly” [23, p. 105]. Therefore, while the focus on visualization is a commonly accepted practice 
of mathematics teaching and learning [17, 25], especially in the digital era (e.g., [8]), there is a 
long and sometimes challenging path from seeing things to understanding correctly their 
mathematical meaning or the absence thereof.  

The advent of computers in the classroom has provided great many opportunities for 
visualizing mathematical concepts using software programs for the construction of graphs, 
diagrams, geometric shapes, numeric tables, and even step-by-step solutions to complex 
problems. Notwithstanding, the appropriate use of software is not a simple matter and a teacher 
has to possess both mathematical and technological skills in order to, whenever possible, provide 
students with conceptually accurate images of mathematical ideas under study. Likewise, a deep 
knowledge of mathematics is required to provide infallible visualization in off-computer 
environments. As Wittmann put it, “The most important thing in teaching is to understand 
mathematical structures as teaching aids that facilitate learning” (cited in [3, pp. 361-362]). The 
present note describes some pedagogical ideas grown along the above lines and born in the 
context of the author’s work with prospective teachers of mathematics. 

 

2. W4S principle and the duality of its affordances 

The limitations of uncritically using the W4S principle become obvious already at the pre-
school level. Indeed, we can see that two pineapples are bigger than three plums. As one moves 
from visual to symbolic, the first and the second kinds of fruit can be associated with the numbers 
2 and 3, respectively. But this does not imply that labels attached to the numbers may be dropped 
leading one to conclude that in the domain of the second order symbolism two is bigger (greater) 
than three. This is a simple example of how the adage “A picture is worth a thousand words” may 
be misleading in the absence of conceptual understanding of the dual nature of educational 
affordances, positive and negative, that a picture provides.  

In what follows, the duality of affordances of the W4S principle in the teaching of 
mathematics will be discussed. The theory of affordances [10] is frequently used nowadays when 
talking about teaching mathematics with computers [13, 14]. However, what is true for a 
computer environment is also true for any learning environment. In general, the more positive 
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affordances an educational environment offers, the fewer negative affordances it presents. At the 
same time, negative affordances of a particular pedagogical approach are often hidden and an 
uncritical use of any approach can lead one astray in the learning of mathematics, thereby 
increasing the effect of hidden didactic challenges. In order to minimize negative affordances of a 
learning environment, the ability to conceptualize first order symbols created through action is 
crucial.  

Kaijevich & Haapsalo [12] referred to a case when procedure is informed by concept as 
an educational approach to the teaching of mathematics. Such conceptually informed procedure 
may include the creation of the first-order symbols toward the end of developing their 
interpretation through the second order symbolism. Conceptual understanding plays a critical role 
not only in seeing things in terms of understanding them but creating educationally flawless 
visual representations of mathematical concepts. In turn, conceptual perspective on visual 
representations can turn negative affordances of a learning environment into its positive 
affordances. 

Mathematical knowledge develops from action on concrete objects  to their formal 
description through words and/or mathematical notation. So, in the teaching of mathematics one 
may encourage students at all levels to start doing mathematics from acting on the first order 
symbols and then, through the appropriate use of the W4S principle, make a transition to the 
second order symbolism abstracted from the concreteness of visual representations.  Appropriate 
use of technology can be defined as balancing positive and negative affordances of what 
technology (which may include more than one digital tool) provides; ideally, maximizing 
positive affordances and minimizing negative affordances of the tools. Because it is a teacher 
who “has a critical responsibility in shaping the relation between the computational media and 
mathematical knowledge” [9, p. 200], courses for prospective teachers of mathematics must 
provide guidance on how to shape this relation starting from the very basic examples of using the 
W4S principle. The same is true regarding the relation between non-digital teaching aids and 
mathematical concepts they are designed to support. 
 

3. W4S principle in teaching primary school mathematics 

As was mentioned above, even in rather simple situations, the W4S principle might give 
misleading results in the absence of conceptual understanding. In fact, conceptual understanding 
can be fostered through the use of counterexamples: a combination of two pineapples and three 
plums can be used to develop the appreciation of the concept of unit in modeling the relationship 
between (or among) whole numbers.  Quantitatively, those objects (pineapples and plums) are 
not comparable due to different units they comprise. Likewise, without recourse to the notion of 
experimental probability one cannot easily respond to the question about chances of randomly 
picking a specific fruit from a basket with the five fruits. That is, seeing a picture does not mean 
that, in the absence of conceptual understanding, one can describe it quantitatively in a correct 
way.  
 In order to develop such understanding of comparing quantities, a teacher can give 
students linking cubes (non-digital technology) of the same size to construct towers 2-cube tall 
and 3-cube tall and then ask several question such as:  

 What do you see? Which tower is taller?  
 What can be said about the numbers 2 and 3? Which one is bigger?  
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In the digital era, comparing quantities can be facilitated (and conceptually enhanced) by 
using a computer program, such as The Geometer’s Sketchpad (created by Nicholas Jackiw in the 
late 1980s and commonly used in the schools in North America) which can help one to construct 
towers out of same size squares. Here, the main idea is to have students construct squares all the 
same size by appropriately using construction features of the program. Note that the W4S 
principle works the same way for the fruit and the squares when the total number of objects has 
to be determined: in both contexts one can see without any reservation that 2 + 3 = 5 . Conceptual 
difficulties with addition begin with the introduction of a base system that can be overcome 
through the appropriate use of the W4S principle in the context of base-ten (or multi-base) blocks 
[2]. 

The Geometer’s Sketchpad can also be used to construct a simple program for comparing 
fractions through fraction circles integrating conceptual understanding into a computer-mediated 
action. Consider the task of constructing the fraction circles 1/2, 1/4, 1/6, and 1/12 (by defining 
the location of their center and the length of the radius), arranging them from the least to the 
greatest, and finding their sum. Both operations should be presented in iconic and numeric forms. 

  

 

Figure 1. We write what we see. 

 

Figure 2. Addition automatically requires equal radii. 

 The main focus of this task deals with a frequently overlooked (or taken for granted) fact 
that fractions may be compared only when the same unit is their point of reference. In terms of 
icons (the first order symbols), the fraction circles 1/2, 1/4, 1/6, and 1/12 are four different sectors 
cut of the same whole circle. In terms of the second order symbols, these three fractions are parts 
of the same unit. This idea is hidden in the construction of a fraction circle when one defines its 
radius. As shown in Figure 1, the four fraction circles have the same radius pictured at the top of 
the sketch. Therefore, they may be compared both as the first order symbols (icons) and the 
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second order symbols (numbers). Finally, when adding the four fractions (Figure 2), their radii 
can be adjusted through an action that brings about a new picture, the description of which in the 
domain of second order symbols is then made in terms of a numeric equation that becomes 
independent of any context. Here, the concept of same unit is implicitly embedded in the 
construction of the very unit using its parts. That is, unlike comparing numbers, adding them has 
to be carried out correctly already in the domain of the first order symbols. At the same time, as 
shown in Figure 3, when adding fractions representing different units one is apparently unable to 
describe the sum at the level of the second order symbolism. 
 

 

Figure 3. The sum does not make sense. 

The above use of fraction circles emphasizes the fact that when one carries out 
arithmetical operations with fractions, it is assumed, though tacitly, that they are fractional parts 
of the same unit. In that way, using the computer program not only “require[s] the user to 
describe intended relationships” [11, p. 365, italics in the original] but force them to integrate 
meaning with the required construction of the objects of visualization. Therefore, a conceptual 
flaw occurring at the action level (constructing fraction circles with different radii) might result in 
the erroneous ordering of the objects based on their size, followed by an incorrect symbolic 
description through an uncritical use of the W4S principle. In the case of adding such fraction 
circles (Figure 3), no symbolic description of the sum can be offered. So, only the equal radii 
construction of fraction circles allows for their comparison, otherwise the comparison of visual 
images is meaningless. At the same time, the operation of adding fraction circles representing 
different units as the first order symbols does not yield any result at all at the level of the second 
order symbolism. It is not surprising that, conceptually, inequalities are considered being more 
sophisticated entities of mathematics than equalities, although, in the case of small numbers, the 
former do not require an operation while the latter do. 

 

4. On the deficiency of drawing: comparing fractions using area model 

 As a more complicated arithmetical example, consider the case of comparing the fractions 

 

3
5

 and 
 

4
7

. Which one is bigger? Figure 4 shows a one-dimensional method of the comparison of 

fractions using the so-called area model for fractions. Whereas this method works well for 
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comparing unit fractions such as 
 

1
2

 and 
 

1
3

, for non-unit fractions that are sufficiently close to 

each other, this method stops working because of its dependency on the accuracy of drawing. As 
shown in Figure 4, looking at the representation of the fractions from left to right one sees what 

can be described symbolically as 
 

3
5
<

4
7

; looking at the same representation of the fractions from 

right to left one sees the opposite relation, 
 

3
5
>

4
7

.  

 

 
Figure 4. Visualization depending on accuracy in drawing is contradictory. 

 

 
Figure 5. Comparison of fractions through counting marks. 

 
Rather than discouraging the use of the W4S principle, this example shows the deficiency 

of the one-dimensional representation of the comparison of fractions and thereby, it motivates a 
two-dimensional method shown in Figure 5. So, the negative affordances of the one-dimensional 
representation were used as a counterexample in comparison of fractions and motivated the 
introduction of a two-dimensional comparison of fractions using area model and the appreciation 
of the positive affordances of the method. That is, the misleading diagram of Figure 4, serving as 
a counterexample to the uncritical use of the W4S principle, plays an important role in fostering 
conceptual understanding of fractions as the second order symbols. At a higher level, one can 
recognize in the diagram of Figure 5 the concepts of the common denominator of two fractions (a 
cell of the grid) and the product of the fractions (the overlap of two different marks), something 
that is definitely missing in Figure 4. Such recognition of the basic concepts of arithmetic is due 
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to the power of the W4S principle, which works well within a flawless learning environment of 
the first order symbols. 

 
 

5. Using the W4S principle at the secondary level 

How many solutions does the equation   tan x = x  have? According to [9], when secondary 
school students see the image of the graphs of the functions y = x  and y = tan x  on a computer 
screen, their answer, a finite number of solutions, is affected by what they see within the range 
[x, y]= [-10,10; - 20, 20] . Indeed, such a question cannot be answered in a computer graphics 
environment without an appropriate application of the W4S principle. Even more, the students’ 
confusion was with what they saw in the neighborhood of the origin: the two graphs didn’t look 
like having the origin as the only point of intersection. It appears that a teacher has to be aware of 
such instances of the misleading use of the W4S principle and utilize them as counterexamples in 
order to motivate alternative approaches to graphing. So, the question about the number of 
solutions of the equation tan x = x  may be considered a TITE problem [1]; that is, a problem that 
is both technology immune (TI) and technology enabled (TE). In other words, such a problem 
cannot be solved by technology alone; yet, technology plays a critical role in its resolution. In 
particular, one cannot correctly answer the question about the number of roots of the equation 
without understanding how mathematical concepts can be integrated with the appropriate use of 
technology. What we want to demonstrate is the infinite number of the roots of this equation 
rather that the infinite number of the points of intersection of the graphs y = tan x  and y = x . So, 
an emphasis has to be on what is happening on the x-axis (where the roots are located) and not in 
the (x, y)-plane.  

Furthermore, the straightforward graphing of the two functions does not show their 
mutual behavior using two dimensions when both x and y have to be seen for sufficiently large 
values. With this in mind, one can use the Graphing Calculator [5], software capable of graphing 
relations from any two-variable equations and inequalities. By using this tool to graph in the 
(x, y)-plane a system of the relations x = tan x, | y | < e , x > 0 , where e  is a sufficiently small 
positive number (e = 0.03 in Figure 6), one can clearly see much more than when the graphs 
y = tan x  and y = x  are constructed. Seeing the points of the x-axis where y = 0 requires just the 
proximity to the x-axis and the computer graphing environment selected, allows one to move 
along the x-axis for sufficiently large values of x. This is an example of how, using conceptual 
understanding, one can turn negative affordances of the learning environment into its positive 
affordances. That is, positive affordances of the Graphing Calculator can be revealed through 
conceptual understanding of how “software can embody a mathematical definition” [7, p. 132] 
allowing one to see the roots of a one-variable equation in the neighborhood of the x-axis for 
sufficiently large x (Figure 6).  

Seeing the Graphing Calculator as an instrument and using mathematics to transform it 
beyond the straightforward graphing of the functions involved, represents one of the components 
of the instrumental genesis [8]. Infinity is an abstraction and its visualization can only be 
approximate. The idea of using the Graphing Calculator to demonstrate the phenomenon of 
infinite number of solutions to an equation becomes an agency for mathematical activities 
through which one learns to construct a system of relations in two variables so that its graph 
enables one to visualize the phenomenon of the infinite number of solutions of an equation 
involving a circular function.  
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Figure 6. The equation tan x = x  continues having roots for sufficiently large values of x. 

  

6. Conclusion 

This note focused mostly on the cases when an uncritical use of the W4S (we write what 
we see) principle in the teaching and learning of school mathematics can lead to incorrect 
mathematical interpretation of visual images provided by commonly used learning environments. 
There are many concepts outside school mathematics for which the W4S principle works nicely 
with or without help of computer graphing. These include Bolzano’s Theorem (regarding a 
continuous function that vanishes within a certain interval at the endpoints of which it assumes 
values of opposite signs) and its generalization known as Intermediate Value Theorem; Rolle’s 
Theorem (regarding the vanishing derivative of a continuous function which itself vanishes at 
least twice) and its generalization known as Mean-Value Theorem. These concepts, however, do 
not involve the infinity. A classic example involving infinity is the early uses of a computer in 
deciding the convergence of the harmonic series [15] or other slowly diverging series. For 
instance, if one uses a spreadsheet to fund the sum of some first 30 million terms of the harmonic 
series, the sum is only about 18. A similar example was provided in the context of using a 
graphic calculator in finding limit of the logarithmic function [9].  

In such conceptually complex milieu, it is the teacher’s responsibility to demonstrate to 
students both flawless and flawed visual representations of a mathematical phenomenon. In some 
cases, a flawed visual representation (like comparison of two fractions shown in Figure 4) may 
serve as a motivation for a more sophisticated, yet flawless and conceptually rich representation 
(like the one shown in Figure 5). In other cases, a flawless representation (comparing same size 
squares to decide the relationship between numbers) may be provided first so that its flawed 
analog (different kinds of fruit) can be shown afterwards to reveal and underline the main idea 
imbedded into the former representation.  

The above recommendations apply to the teaching of prospective teachers as well as their 
students, because, as is well known, teachers tend to teach as they have been taught [20] and such 
a tendency may reflect their whole mathematics learning background. As the author’s experience 
working with teacher candidates in different mathematics education courses suggests, the W4S 
principle works well as a learning concept in the classroom. An appreciation of the dual 
affordances of the principle by teacher candidates is due to the courses’ strong focus on the 
classroom pedagogy at the level of mathematics itself for a good command of pedagogical 
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content knowledge [21] is currently considered as the basis for students’ progress in the learning 
of mathematics [6]. In the digital era, this progress can be accelerated by the appropriate use of 
technology.  
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