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ABSTRACT 

Path integration, also known as dead reckoning, is a fundamental 

navigation strategy utilized by many diverse animal species.  This 

strategy has been of interest for use in robot navigation for some 

time.  Previous computational implementations have provided 

solutions either through a traditional engineering approach or 

through evolutionary computation.  Although successful, these 

approaches result in systems that cannot adapt to changes in the 

environment in real time and are unable to autonomously correct 

for the error that is inherent in the path integration computation.  

The current work describes a simulated environment, modeled on 

Vickerstaff and Di Paolo [9], for developing navigation in an 

autonomous agent, and progress in establishing the developmental 

framework. 
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1. INTRODUCTION 
Robot navigation has traditionally centered on engineering the 

solutions to three fundamental questions: (1) Where am I? (2) 

Where are other places in relationship to me? (3) How can I get 

from one place to another? [4] In other words, traditional 

approaches to navigation for robots have focused on localization, 

mapping, and path planning.  Although often very successful, 

such engineering approaches have the drawback of lacking 

flexibility and adaptability, and therefore cannot easily be 

generalized across different environments or different robots. 

Animals are highly skilled navigators, and have evolved diverse 

spatial representation processes that reflect the varying cognitive 

demands of navigation tasks [2]. The designers of robot 

navigation systems have long been inspired and motivated by 

natural evolution's solutions to the challenges of navigation.  The 

motivation behind the current research is to approach navigation 

from a developmental perspective (see e.g. [14-16, 18, 22, 26-

27]).  In animals, navigation itself consists of many different 

complex strategies, behaviors, and their corresponding 

representations.  The focus of the current work is the strategy 

known as path integration.  The overarching research question at 

the center of the current study, using path integration as the 

cognitive task, is how animals use environments to autonomously 

develop skills, and how that might be used to inform the design of 

robotic navigation systems. 

2. OVERVIEW 

2.1 Path Integration 
Path integration, also known as dead reckoning, is the continual 

updating of position relative to a location, based on velocity, 

temporal, and acceleration information [6].  First postulated by 

Charles Darwin [1], path integration is fundamental and 

ubiquitous, operating in many diverse species, both invertebrate 

and vertebrate, including humans.  Path integration functions 

automatically and constantly whenever the animal moves in 

continuous space [3, 7].  The path integration system works even 

in terrain in which landmark cues are absent, or otherwise 

unreliable.  Any egocentric navigation system of this kind has two 

pitfalls: 1) it must run without interruption as long as the animal is 

moving, and 2) the system is inherently susceptible to cumulative 

error [12]. 

 

Figure 1.  Path integration, or dead reckoning.  The animal’s 

position relative to its starting point (nest) at time t, P(t), is 

given by the vector (v, r). 

2.2 The Developmental Approach 
Founded in human cognitive development and supported by 

ongoing research in neuroscience, the developmental approach to 

artificial intelligence (AI) seeks to realize an automated learning 

mode that closely mirrors the way in which humans and animals 

learn: “automated animal-like learning” [13].  In this learning 

mode, interaction with the environment is continuous,  dynamic, 

on-line, performed in real time, and input is rich and often multi-

modal [13, 16-17]. 

The framework of autonomous mental development includes both 

intrinsic and developmental capabilities.  In a natural brain or an 

embodied artificial system, the intrinsic developmental program-- 
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encoded genetically in a natural system and written by the 

programmer in an artificial system--controls the development of 

cognitive capabilities through autonomous, real-time interactions 

with both the external world and its own internal world, through 

its sensors and effectors. 

Unlike previous approaches, autonomous mental development 

(AMD) is not task-specific.  Instead, AMD utilizes a task-

independent paradigm, characterized by the following steps: 

• Design a robot body according to the ecological conditions 

in which the robot will function. 

• Design the developmental program. 

• The robot begins executing the developmental program at 

“birth.” 

• Humans interact with the robot in real-time, to develop the 

robot's brain [15, 22].  

In this way, the developmental robot will “grow” from infancy to 

adulthood, learning much as Turing envisioned the education of 

the “child” machine [8].  Utilizing this approach, robots should be 

able to learn any task, and the programmer does not need to know 

in advance what the task will be, nor have any domain knowledge 

about the end task.  The human programmer does not code any 

task-specific information or actions; rather, these are learned 

through the operation of the developmental program [15, 22]. 

This is a major departure from traditional, symbolic approaches to 

AI.  As noted earlier, within the task-specific paradigm, the 

internal representations of the system are predetermined by the 

human designers.  The automatic generation of self-organizing 

internal representations is pivotal to AMD.  Traditional, symbolic 

AI representations are world centered, i.e., the items of the 

representation correspond to a world concept.  Each component of 

the representation has a predefined meaning in relation to the 

exterior world, using unique variables for each attribute of the 

object, necessitating a unique representation for every single 

physical object in the environment.  From this, it is clear that this 

idea is neither scalable nor capable of coping with the richness 

and ambiguity of human environments.  Instead of world centered 

representations, AMD utilizes distributed body centered 

representations.  Instead of being an atomic, human-designed 

representation, a distributed body centered representation is built 

from the body's sensors and effectors, and the generated 

representation is distributed over different areas, much as 

representations may be distributed over different cortical areas in 

a living brain.  In this way, a developmental robot generates 

representations that are more general than hand-designed world 

centered representations, in the sense that the representations are 

not unique for a single object.  Correspondingly, generated 

actions are not unique given different sensory inputs, even of the 

same object [15].  The net result is flexibility, enabling the 

developmental robot to function in unknown and dynamic 

environments. 

The theoretical grounding of the developmental approach draws 

strongly from the fields of neuroscience and psychology.  From 

the neuroscience research, emphasis is placed particularly on the 

information on neural plasticity; in psychology, the emphasis is 

on developmental psychology and animal learning.  Taken 

together, these areas provide the basis for development's focus on 

experience and learning. 

2.3 The Simulation Platform 
The BeaconWorld simulation is modeled in part after Vickerstaff 

and Di Paolo [9], and is programmed in MATLAB.  The goal of 

the simulation is to provide a simple virtual environment for the 

development of path integration under the influence of 

environmental beacons.  A beacon is simply some feature of the 

environment that is somehow salient; in a natural environment, 

this could be a distinctive location or object, such as the nest, a 

potential landmark, or a food source.  Vickerstaff and Di Paolo 

approached this problem using genetic algorithms to evolve 

neural network models of path integration, emphasizing the 

reproduction of the behavior of Saharan desert ants, Cataglyphis 

fortis   Their model successfully evolved a bicomponent model of 

path integration (see [5]) when the neurons were given properties 

that allowed multiplication by way of changes in synaptic strength 

[9]. 

2.3.1 The Environment 
The environment of the current simulation is an unbounded 2-D 

plane, with the home (or nest) location always at the origin, (0, 0).  

Each trial presents the agent with a varying number of beacons.  

The number and locations of the beacons may be either generated 

randomly or given by the experimenter.  The world state is 

maintained in a structure, and the world information is used to 

produce the visualization in the simulation.  Figure 2 shows an 

example of a BeaconWorld world with an agent.  The home 

location is at (0, 0), shown by the green star ('*'), and the beacon 

locations are shown by the blue squares.  The agent appears as the 

red filled circle, with its global orientation indicated by the 

needle. 

 

Figure 2. Example world with agent. 

2.3.2 The Agent 
The overall design of the agent's sensors is modeled on 

abstractions of vision, as a simplification of simulating synthetic 

visual input for the agent.  Parts of the sensor design were based 

on Vickerstaff and Di Paolo [9], and other parts were added or 

modified, either as biologically motivated improvements over the 

model study [9] or to modify the sensory system to better 

accommodate a developmental approach. 

The agent's state is maintained in a structure.  The agent's body is 

modeled as bilaterally symmetric, with symmetrically paired 
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sensors.  The beacon and compass sensors have positive cosine-

shaped activation functions, so that no sensor would give a 

negative value for its activation.  The beacon power, home, speed, 

and food sensors are single-copy components.  Table 1 gives a 

summary of the agent’s sensor data fields and their contents. 

Table 1.  Agent Structure Sensor Data Fields 

Field Name Contents 

loc 
Current location of agent, in polar 

coordinates 

thetainit Initial orientation of agent, in radians 

bsens.left 

bsens.right 
Left/right beacon sensor output 

alcomp.left 

alcomp.right 
Left/right allothetic (global) compass output 

idcomp.left 

idcomp.right 

Left/right idiothetic (egocentric) compass 

output 

bpower Pre-attentive beacon power sensor output 

bnovrwd Beacon “novelty” reward 

speed Agent’s speed (not yet implemented) 

food 
Whether or not the agent has found a food 

item (not yet implemented) 

home 

Whether or not the agent is at the home 

location (currently implemented in 

simplified form) 

 

Each beacon and compass sensor respond maximally to a 

particular orientation of the agent, with each sensor pair having 

complementary values such that if one sensor responds maximally 

at θAgent = A, the other responds maximally at θAgent = -A.   The 

beacon sensors activations, modeled on Vickerstaff and Di Paolo 

[9] are defined as  

left=[cos(θB - π/2)/2] + 0.05,  right=[cos(θB + π/2)/2] + 0.05,  

where θB is the current angle of the beacon to the agent's central 

body axis.  The agent attends to only one beacon at a time, the 

beacon selected by the “pre-attentive” beacon power sensor, 

which uses both beacon distance and beacon size to select the 

beacon of highest “interest” to the agent.  Closer beacons are of 

more interest than those that are farther away, but a larger beacon 

is more interesting than a smaller one when the distances to them 

are similar. 

The allothetic (global) compass sensors activations, modeled on 

Vickerstaff and Di Paolo [9] are defined as 

left=[cos(θA - π/4)/2] + 0.05,  right=[cos(θA + π/4)/2] + 0.05,  

where θA is the agent's current global orientation in radians, in -π 

to π.  The allothetic compass sensors activations could be thought 

of as the response of visual or light sensors to a stationary sun at 

infinity in the east (i.e., over the positive x-axis). 

The idiothetic (egocentric) compass sensors were added as a 

biologically-motivated enhancement over Vickerstaff and Di 

Paolo's [9] design, since animals generally have multiple, 

redundant compass systems that both interact and reinforce each 

other and function independently when conditions render one 

compass system unuseable [11].  The idiothetic compass was 

designed to model a vestibular sense of direction, independent of 

the visual system.  This sense of direction can be defined 

arbitrarily in any environment, since its reference direction is set 

as the initial orientation of the agent at the beginning of an 

outbound journey, and is not dependent on maintaining global 

references.  The idiothetic (egocentric) compass sensors 

activations are defined as 

left=[cos(θI - pleft)/2] + 0.05,  right=[cos(θI + pright)/2] + 0.05,  

where θI = (Current global orientation) - (Initial orientation), and 

pleft and pright are the left and right sensor's preferred directions, 

respectively, with pleft = (Initial  orientation) + π/4, and pright = 

(Initial  orientation) - π/4. 

The home sensor is implemented in a simplified form, with an 

activation value of 1 if the agent is at a distance of less than 0.01 

from the home location, or 0 otherwise.  The food and speed 

sensors are not implemented for this phase of the study. 

2.3.3 Effector and Control Model 
The agent models a two-wheeled robot, with control of the robot 

being a direct mapping from the wheel velocities to motion (the 

robot is assumed to have low inertia).  The input to the two 

rotation motors varies according to the cognitive design of the 

agent.  The agent's design included a forward motor, which was 

not implemented; the agent's motion was effectively modeled 

using only the two wheel motors. 

2.3.4 Developmental Framework 
Before any learning or development can take place, the agent 

needs to have a foundation for “intelligence,” a framework for 

development.  This framework includes giving the agent a sensory 

mapping, cognitive mapping, and a value system.  To date, much 

of this framework has been established.  In order to build and test 

the framework, the agent is being trained to visit the beacons in 

the environment.  Although this task is not part of the path 

integration problem per se, the developmental paradigm will 

allow for generalization to the larger problems of developing path 

integration once the developmental framework is established. 

The sensory and cognitive mappings for the agent are performed 

by the Multi-layer In-place Learning Network (MILN) [20-21], 

using Lobe Component Analysis (LCA) [23].  In order for the 

agent to learn from its environment, it must have a sensory 

mapping--an effective internal representation of the environment, 

using a limited storage capacity.  In the context of an artificial 

agent and machine learning, the continuous state space needs to 

be discretized, exploiting repeated or similar structure.  Lobe 

Component Analysis (LCA) [23] was used for this discretization.  

The goal of the LCA algorithm is to learn an optimal 

representation of a set of input samples with a much smaller set of 

representation vectors (the lobe component).  LCA is an “in-

place” algorithm, since it operates incrementally, it does not store 

higher-order statistics (such as covariance matrix), and the 

network develops and learns as a side effect of competitive 

interactions, instead of using a separate developer to learn [21, 

23].  LCA is used to transform the continuous space of the beacon 

sensors and the rotation motors into discrete neurons.  These two 

types of neurons are then used to produce a discrete state space,  
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Figure 2. Developmental framework 

with each state a combination of sensor (beacon sensor) and 

motor (rotation motor) neurons..  The state space is internal, i.e., it 

is in the agent’s “brain,” and is automatically generated from the 

agent’s sensorimotor experience. 

The cognitive mapping for the agent is accomplished by the 

Multi-layer In-place Learning Network (MILN).  This mapping is 

essentially a Markov model, with one-step, or one sensor/effector 

frame, prediction.  Here, prediction is framed as a regression 

problem.  The MILN takes as input the discrete internal states as 

described above, using the top responding sensor and effector 

neurons as that state.  The output is all possible next states; the 

agent learns through experience how to update the weights, or 

transition probabilities, to the next state.  In this way, the agent’s 

experience gives what states are most probable given the current 

state, leading to the prediction of what will happen next.  The 

current value system is based on “novelty” rewards: the agent 

receives a reward when it reaches a beacon (through the beacon 

novelty reward sensor); after reaching a beacon, the agent 

becomes disinterested in that beacon for a period of time (i.e., the 

beacon is no longer novel), so the agent will not attend to that 

beacon.  After the period of disinterest has passed, the beacon 

regains its original novelty, and the agent can again be interested 

by that previously visited beacon. 

3. FUTURE WORK 
The anticipated future directions of this study include several 

different components.  The first element is the completion of the 

current phase, learning beacon homing using reinforcement 

learning.  In this phase, the agent will learn how to use its sensory 

information and corresponding actions to earn rewards.  During 

this process, the weights (transition probabilities) of the MILN 

will be trained using Q-learning [10]. 

The agent needs to have information about direction and distance 

for the path integration computation; the result of that 

computation is fundamentally an estimate of the bearing and 

distance to the goal location.  The concepts of direction and 

distance will therefore need to be developed.  Direction is 

potentially relatively straightforward, since the agent can make 

use of external directional references (i.e., the allothetic compass 

sensors).  This will enable learning mappings from sensory 

experience.  Distance is likely to prove very challenging, since 

there is no direct external reference.  The agent will either have to 

develop an internal “distance sense,” analogous to a sense of self-

motion, or it will need to learn to map other sensory input, such as 

vision, to a sense of distance.  Which of these directions will 

prove more advantageous has yet to be determined.  The 

culmination of this research would be for the agent to integrate the 

direction and distance concepts in full-fledged path integration. 

4. CONCLUSION 
The useful nature of path integration is apparent by its near 

ubiquity in the animal world.  It is a remarkably sophisticated 

behavior, yet it is performed effortlessly even by animals with 

relatively simple nervous systems.  Path integration poses a great 

challenge to the developmental approach, and as with most 

challenges, offers tantalizing rewards.  With its requirement for 

the higher-level senses of direction and distance, the path 

integration problem offers an opportunity for the developmental 

approach to break new ground in more complex concepts, perhaps 

moving one small step closer to the elusive goals of artificial 

intelligence. 
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