1. Function is $f(x)=3 x^{4}-8 x^{3}+6 x^{2}$, so derivative is $f^{\prime}(x)=12 x^{3}-24 x^{2}+12 x=12 x\left(x^{2}-2 x+1\right)$, which factors further: $f^{\prime}(x)=12 x(x-1)(x-1)$. For critical numbers, this is zero when $x=0,1$. Make a number line, and test values like $-1,0.5$, and 2 . We find that the curve is decreasing, then increasing, then increasing, so there's a local minimum at $x=0$ - the point is $(0,0)$. There is no local maximum. Now, we take the second derivative, which is $f^{\prime \prime}(x)=36 x^{2}-48 x+12=12\left(3 x^{2}-4 x+1\right)$, and this factors, so $f^{\prime \prime}(x)=12(3 x-1)(x-1)$, and this is zero when $x=\frac{1}{3}$, 1 . Make another number line, and test values such as $0,0.5$, and 2 . We find that the function is concave up in the first interval, concave down in the second interval, and concave up in the third. So, the points $(0,0)$ and $(1,1)$ are points of inflection. The only intercept is $(0,0)$. Here's the curve's actual sketch, in the areas of importance:

2. For the function $y=x^{5 x^{2}}$, we use logarithmic differentiation: $\ln y=\ln x^{5 x^{2}} \Rightarrow \ln y=\left(5 x^{2}\right) \ln x$, and then we differentiate implicitly. $\frac{1}{y} \frac{d y}{d x}=\left(5 x^{2}\right)\left(\frac{1}{x}\right)+(10 x) \ln x$ (the right side required the product rule). So, solving, we get $\frac{d y}{d x}=y(5 x+10 x \ln x)=x^{5 x^{2}}(5 x+10 x \ln x)$, and we're done.
3. Left to right: $8 y^{3} \frac{d y}{d x}-3\left(x \frac{d y}{d x}+y\right)=1+5 \frac{d y}{d x} \Rightarrow\left(8 y^{3}-3 x-5\right) \frac{d y}{d x}=1+3 y \Rightarrow \frac{d y}{d x}=\frac{1+3 y}{8 y^{3}-3 x-5}$.
4. $\quad \frac{d y}{d x}=5\left(\cot \left(4 x^{3}\right)\right)^{4}\left(-\csc ^{2}\left(4 x^{3}\right)\right)\left(12 x^{2}\right)=-60 x^{2} \cot ^{4}\left(4 x^{3}\right) \csc ^{2}\left(4 x^{3}\right)$.
5. $\frac{d y}{d x}=\frac{1}{\sqrt{1-(2 x-1)^{2}}}(2)=\frac{2}{\sqrt{1-\left(4 x^{2}-4 x+1\right)}}=\frac{2}{\sqrt{4 x-4 x^{2}}}=\frac{2}{\sqrt{4 x(1-x)}}=\frac{1}{\sqrt{x(1-x)}}$.
6. Product rule: $\frac{d y}{d x}=\sin x\left(\frac{1}{x^{2}}(2 x)\right)+\cos x\left(\ln \left(x^{2}\right)\right)=\frac{2 \sin x}{x}+\ln \left(x^{2}\right) \cos x$.
7. A diagram is to the right. Let x be the distance Phyllis has walked from the start, and let y be the distance Joe has walked (both in feet). Then, let z be the distance between Joe and Phyllis. Our equation is $x^{2}+y^{2}=z^{2}$, and we
 want to find $\frac{d z}{d t}$ when $x=10 \mathrm{ft}$. If Phyllis has walked 10 feet, then it has taken 5 seconds, so Joe has walked 7.5 feet. From these, we can use our equation (the Pythagorean theorem, naturally) to find $z=12.5$ feet. We also know that $\frac{d x}{d t}=2$ and $\frac{d y}{d t}=1.5$. Now, we differentiate our equation with respect to time t, and that gives us $2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 z \frac{d z}{d t}$. We know five of these quantities, and want to find the sixth. Plug in: $2(10)(2)+2(7.5)(1.5)=2(12.5) \frac{d z}{d t}$, which gives us $40+22.5=25 \frac{d z}{d t} \Rightarrow \frac{d z}{d t}=\frac{62.5}{25}=\frac{5}{2}$, so the distance between them is increasing at $2.5 \mathrm{ft} / \mathrm{sec}$.
8. $L(x)=f(a)+f^{\prime}(a)(x-a)$, and $f(a)=f(2)=21$. We take the derivative, so $f^{\prime}(x)=9 x^{2}-2 x$, and $f^{\prime}(a)=f^{\prime}(2)=32$. So, our formula is $L(x)=21+32(x-2)=32 x-43$.
9. Find the endpoints of the function on the interval: $f(-2)=-28$ and $f(1)=2$. So, the (average) slope found by using the slope formula on the endpoints - is $m=\frac{2+28}{1+2}=\frac{30}{3}=10$. The derivative is $f^{\prime}(x)=9 x^{2}-2 x$, so we need to set this equal to 10 and solve: $9 x^{2}-2 x=10 \Rightarrow 9 x^{2}-2 x-10=0$. The quadratic formula gives us $x=\frac{2 \pm \sqrt{4-4(9)(-10)}}{18}=\frac{2 \pm \sqrt{364}}{18}=\frac{1 \pm \sqrt{91}}{9}$. The one of these that's in the interval we have is $c=\frac{1-\sqrt{91}}{9}$. This was made up quickly - if I give you an MVT problem on the test, it will be likely more "friendly."
10. Similar to \#9, except the slope should come out to be zero (I'm actually going to show that). Find the endpoints: $f(0)=0$ and $f(3)=27-3(9)=0$, so the slope is 0 . The derivative is $f^{\prime}(x)=3 x^{2}-6 x$, so we set this equal to 0 , and get $3 x(x-2)=0 \Rightarrow x=0,2$. Our value of $c=2$ (the one in the interval).
11. Since $y=4$, that means $f(x)=4$, so $x^{2}-3 x=4 \Rightarrow x^{2}-3 x-4=0 \Rightarrow(x-4)(x+1)=0$, which gives us $x=-1$, 4. The leftmost location is $x=-1$. Derivative is $f^{\prime}(x)=2 x-3$, so the slope at $x=-1$ is simply $f^{\prime}(-1)=-5$.

I did these VERY quickly, so if you think there's a mistake, please send me an email and I'll check it out!

