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For this, use the reciprocal of the highest power of h found in the denominator, multiplied on top and 
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.  Note that each term involving a 

variable denominator will tend toward zero as h approaches infinity. 
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this does not allow us to plug in, but it does make it easier 
for us to evaluate the limit.  When x is approaching 1 from 
the right, the numerator of this expression is approaching –2 
(also from the right, but that doesn’t really matter), while the 
denominator is approaching 0 from the right, meaning it’s 
positive.  So, this is an infinite limit, and will tend toward 
∞− , since the numerator is negative and the denominator is 

positive.  Here’s a sketch of the graph to show the trend – 
there’s also a “hole” in the graph at 
x = –3 (a removable discontinuity). 
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Derivative Samples: 
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using the quotient rule, shame on you!!  ☺  It makes the problem much longer, which will take more 
time than expected… 
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factored, as [ ]xxexf x cot2csc5)(' 2 −= . 
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differentiation problem on your test will probably be a relatively simple one, since it’s a “fresh” topic. 
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we know how to do it using the power rule. 
 



Continuity Sample: 
 

⎪⎩

⎪
⎨
⎧

≥+

<
+−
−−

=
3if4

3if
34
352

)( 2

2

xmx

x
xx
xx

xf  

I factor the numerator and denominator of the first part: 
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defined at x = 1, so it cannot be continuous there.  This is an infinite discontinuity.  We also have to 
determine what value of m will “force” continuity at x = 3, another place where there could be a 
problem.  To find this, we must do limits from the left and the right: 
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Word Problem Samples: 
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242436)( tttV +−=  
First question asks about a rate (derivative): ttV 824)(' +−= .  Plug in t = 2, and we get –8.  But, the 
problem says “draining,” so we want our answer to be positive: 8 gallons per minute.  You must include 
the units! 
 
How much water drains in the first two minutes?  Well, when t = 0, V = 36.  When t = 2, V = 36 – 48 + 
16 = 4.  So, 32 gallons have drained out in the first two minutes. 
 
The average rate at which the water has drained out in the first two minutes is 32/2 = 16 gallons per 
minute. 



Working with a Graph: 
 
The first question asks for any places where the graph is not differentiable.  For differentiability, the 
graph basically needs to be “smooth.”  It is clear from the graph that at x = –1, the graph is not 
differentiable. 
 
For the other sketches, I’ve drawn them and scanned the results in on the following page.  Here are the 
explanations: 
 
i. this is just the original graph shifted to the right 1 unit (horizontal translation) 
ii. this is the original graph reflected through the y-axis 
iii. this graph is the original compressed in toward the y-axis – every point is half as far from the y-

axis as it was originally 
iv. this sketch will need to be the slope of the tangent line at every point on the original graph – this 

is a little tricky, and we need to estimate some of these slopes, but I think my sketch is pretty 
close.  I started by finding the (constant) slope of the linear section.  Then, it seemed that the 
right hand piece of the graph (the curvy part) started with a horizontal tangent, which means the 
slope would start at zero.  Since this part goes uphill the whole way, we know the slope will 
always be positive, so the derivative will be above the y-axis.  However, the slopes increase for a 
little while, then decrease briefly, then increase again for as long as we can see the graph.  To be 
more accurate, I’d really need to draw some sample tangents with a ruler, pick points on them, 
and calculate the slopes using the slope formula.  I’m too tired…  ☺ 

 
The last question here asks for an inverse function value.  So, the –2 that they give us is a y-value, and 
so we go to –2 on the y-axis, move over until we find the point on the curve, and find that the x-value at 
that point is 2.  We determine that 2)2(1 =−−f . 




