11. $\quad H(x)=\sqrt[3]{1-e^{2 x}}$, so $y=\sqrt[3]{1-e^{2 x}}$. Then, the inverse is $x=\sqrt[3]{1-e^{2 y}}$, and we need to solve for y. $x=\sqrt[3]{1-e^{2 y}} \Rightarrow x^{3}=1-e^{2 y} \Rightarrow e^{2 y}=1-x^{3} \Rightarrow \ln \left(e^{2 y}\right)=\ln \left(1-x^{3}\right) \Rightarrow 2 y=\ln \left(1-x^{3}\right) \Rightarrow y=\frac{1}{2} \ln \left(1-x^{3}\right)$.
12. $\sec \left(\sin ^{-1} x\right)$ is really $\sec \theta$, where $\theta=\sin ^{-1} x$. This means $x=\sin \theta$, so we set up a generic diagram like the one to the right. Then, we use the Pythagorean Theorem: $b^{2}+x^{2}=1^{2} \Rightarrow b=\sqrt{1-x^{2}}$. So the answer is $\sec \theta=\frac{1}{\cos \theta}=\frac{\text { hyp }}{\mathrm{adj}}=\frac{1}{\sqrt{1-x^{2}}}$.

13. For $f(x)=\frac{x+2}{x^{2}-4}$, the discontinuities are places where the denominator is zero, so $x^{2}-4=0 \Rightarrow x= \pm 2$.

When we factor the numerator and denominator, we can tell what kind: $f(x)=\frac{x+2}{x^{2}-4}=\frac{x+2}{(x-2)(x+2)}$.
So the $x+2$ "problem" will cancel, and that is a removable discontinuity. The $x-2$ "problem" will not cancel out, so that is a place where there's a vertical asymptote (an infinite discontinuity). To fix the removable discontinuity, we simply cancel the $x+2$ factors, then plug in -2 to what remains, as follows: $f(x)=\frac{x+2}{(x-2)(x+2)}=\frac{1}{x-2}$, if x is not -2 . So, we set $f(-2)=\frac{1}{-2-2}=-\frac{1}{4}$, and we've "repaired" the hole in the graph.

