16. $f(x)=x^{3}-3 x^{2}+5$
a. $\quad f^{\prime}(x)=3 x^{2}-6 x$, so $f^{\prime}(x)=0 \Rightarrow 3 x^{2}-6 x=0 \Rightarrow 3 x(x-2)=0 \Rightarrow x=0$, 2, which are the critical numbers. So, we put these on a number line, and test, for example, $-1,1$, and 3 in the derivative. This gives us,,+-+ respectively, so the function is increasing on $(-\infty, 0) \cup(2, \infty)$ and decreasing on $(0,2)$.
b. From the work in part a, clearly there is a local max at $x=0$ and a local min at $x=2$. To find the y-values, we plug into the original function: $(0,5)$ is a local max and $(2,1)$ is a local min.
c. $\quad f^{\prime \prime}(x)=6 x-6$, so $f^{\prime \prime}(x)=0 \Rightarrow 6 x-6=0 \Rightarrow x=1$. Making a number line and checking 0 and 2 (for instance) in the second derivative, we get - then + . So, $f(x)$ is concave down on $(-\infty, 1)$ and concave up on ($1, \infty$).
d. From work done in part c, there is obviously an inflection point at $x=1$. The coordinates of this point are (1, 3).
17. A diagram is shown to the right. I establish the following variables for the problem:
$x=$ width of the base of the box
$2 x=$ length of the base of the box
$h=$ height of the sides of the box

$V=l w h$, so $10=2 x(x)(h) \Rightarrow h=\frac{10}{2 x^{2}}=\frac{5}{x^{2}}$
We want to minimize cost, so we have to create a cost function:
$C=\$ 10[x(2 x)]+4(\$ 6[h(2 x)]) \Rightarrow C=20 x^{2}+48 h x \Rightarrow C(x)=20 x^{2}+48\left(\frac{5}{x^{2}}\right) x \Rightarrow C(x)=20 x^{2}+\frac{240}{x}$.
Note that this total cost comes from the cost of the base (only one) and the sides (there are four).
So, let's use Calculus to minimize:
$C^{\prime}(x)=40 x-\frac{240}{x^{2}}$, so $C^{\prime}(x)=0 \Rightarrow 40 x-\frac{240}{x^{2}}=0 \Rightarrow 40 x=\frac{240}{x^{2}} \Rightarrow 40 x^{3}=240 \Rightarrow x^{3}=6 \Rightarrow x=\sqrt[3]{6}$.
Now, if I make a first derivative number line and check $x=1$ and $x=2$ in the first derivative, I get then + , so clearly $x=\sqrt[3]{6}$ is a min. Thus, the dimensions of the container are $\sqrt[3]{6}$ meters wide, $2 \sqrt[3]{6}$ meters long, and $\frac{5}{\sqrt[3]{6^{2}}}=\frac{5 \sqrt[3]{6}}{6}$ meters high.
18. Use implicit differentiation: $x^{3} \frac{d y}{d x}+3 x^{2} y-\left(x(2 y) \frac{d y}{d x}+y^{2}\right)=0$. Note that we used the product rule twice. Now I distribute the negative: $x^{3} \frac{d y}{d x}+3 x^{2} y-2 x y \frac{d y}{d x}-y^{2}=0$. Collecting "like terms" gives us $\frac{d y}{d x}\left(x^{3}-2 x y\right)=y^{2}-3 x^{2} y \Rightarrow \frac{d y}{d x}=\frac{y^{2}-3 x^{2} y}{x^{3}-2 x y}$. So, to find the slope of the tangent line at $(2,2)$, we simply plug in $x=2$ and $y=2: \frac{d y}{d x}=\frac{2^{2}-3\left(2^{2}\right)(2)}{2^{3}-2(2)(2)}=\frac{4-24}{8-8}=\frac{-20}{0}$, so the slope is undefined. (This means the tangent line is vertical.)
19. $f(x)=\sqrt[4]{x}$, so $f(x)=x^{1 / 4} \Rightarrow f^{\prime}(x)=\frac{1}{4} x^{-3 / 4}$. Since $a=16, f(a)=2$ and $f^{\prime}(a)=\frac{1}{4(16)^{3 / 4}}=\frac{1}{32}$. Now, the local linearization formula is $L(x)=f(a)+f^{\prime}(a)(x-a)$, so $L(x)=2+\frac{1}{32}(x-16)$. (We could modify this to a linear expression: $L(x)=\frac{1}{32} x+\frac{3}{2}$, if that's all that was requested by the problem.) Now, to approximate $\sqrt[4]{15.52}$ to two decimal places, we simply use $x=15.52$. So, $f(x) \approx L(x)$, and $L(15.52)=2+\frac{1}{32}(15.52-16)=2+\frac{1}{32}(-0.48)=2+\frac{1}{32}\left(\frac{-48}{100}\right)=2-\frac{3}{200}=2-\frac{15}{1000}=1.985$. So, to two decimal places, our answer (the approximation) is 1.99. Note that the actual fourth root of 15.52 rounds to 1.98 to two decimal places.
20. $A=\pi r^{2}$, so $\frac{d A}{d t}=2 \pi r \frac{d r}{d t}$. We are given that $\frac{d r}{d t}=11 \frac{\mathrm{~cm}}{\mathrm{sec}}$ in the problem itself, and we know that after 3 seconds, the radius will be 33 cm . So, $\frac{d A}{d t}=2 \pi r \frac{d r}{d t}=2 \pi(33)(11)=726 \pi \frac{\mathrm{~cm}^{2}}{\mathrm{sec}}$.
