1. 4 points for this problem
$y^{\prime}=y-t^{2}$
Find and lightly sketch the isocline for which the slope is 2 , marking direction field indicators on it as well.
$y^{\prime}=2 \Rightarrow y-t^{2}=2 \Rightarrow y=t^{2}+2$
2 points for this
The "light sketch" is shown to the right (l'd prefer that it be dotted, but as long as it's drawn properly, that really doesn't matter.)

1 point for this
Along their light sketch, they need to have little segments drawn showing an approximate slope of 2. (As long as it goes uphill to the right, and is clearly steeper than a 1-slope, they're fine.)

1 point for this

2. 7 points for this problem

Solve by separation of variables: $y^{\prime}=\frac{2 t}{1+2 y}$ with $y(1)=-2$.
Rewrite and separate: $\frac{d y}{d t}=\frac{2 t}{1+2 y} \Rightarrow(1+2 y) d y=2 t d t$
Integrate both sides: $\int(1+2 y) d y=\int 2 t d t \Rightarrow y+y^{2}=t^{2}+C$
2 points for this

Apply initial condition $(1,-2):-2+(-2)^{2}=1^{2}+C \Rightarrow C=1$
Write final (implicit) solution: $y+y^{2}=t^{2}+1$ (or equivalent)

2 points for this
2 points for this
1 point for this

3. 6 points for this problem

IVP $y^{\prime}=y-2 t$, where $y(1)=-2$, approximate $y(2)$ using Euler's method, with $h=\frac{1}{2}$

Calculate slope at $(1,-2):-2-2(1)=-4$
Find first approximation: $t_{k+1}=t_{k}+\frac{1}{2}$ and $y_{k+1}=y_{k}+h\left(f\left(t_{k}, y_{k}\right)\right)$
So, new point is $\left(\frac{3}{2},-4\right)$
Calculate slope at $\left(\frac{3}{2},-4\right):-4-2\left(\frac{3}{2}\right)=-7$
Find the desired approximation: new point is $\left(2,-\frac{15}{2}\right)$

1 point for this

2 points for this

1 point for this

2 points for this
(Technically, the answer is just the -7.5, but if they don't identify it separately, that's okay.)

1. 4 points for this problem
$y^{\prime}=y+t^{2}$
Find and lightly sketch the isocline for which the slope is 3 , marking direction field indicators on it as well.
$y^{\prime}=3 \Rightarrow y+t^{2}=3 \Rightarrow y=3-t^{2}$
2 points for this
The "light sketch" is shown to the right (l'd prefer that it be dotted, but as long as it's drawn properly, that really doesn't matter.)

1 point for this
Along their light sketch, they need to have little segments drawn showing an approximate slope of 3. (As long as it goes uphill to the right, and is clearly steeper than a 1-slope, they're fine.)

1 point for this

2. 7 points for this problem

Solve by separation of variables: $y^{\prime}=\frac{3 t^{2}}{1-2 y}$ with $y(1)=-2$.

Rewrite and separate: $\frac{d y}{d t}=\frac{3 t^{2}}{1-2 y} \Rightarrow(1-2 y) d y=3 t^{2} d t$
2 points for this
Integrate both sides: $\int(1-2 y) d y=\int 3 t^{2} d t \Rightarrow y-y^{2}=t^{3}+C \quad 2$ points for this
Apply initial condition $(1,-2):-2-(-2)^{2}=1^{3}+C \Rightarrow C=-7$
Write final (implicit) solution: $y+y^{2}=t^{2}-7$ (or equivalent)
3. 6 points for this problem

IVP $y^{\prime}=y+4 t$, where $y(1)=-2$, approximate $y(2)$ using Euler's method, with $h=\frac{1}{2}$
Calculate slope at (1, -2): $-2+4(1)=2$
1 point for this
Find first approximation: $t_{k+1}=t_{k}+\frac{1}{2}$ and $y_{k+1}=y_{k}+h\left(f\left(t_{k}, y_{k}\right)\right)$
So, new point is $\left(\frac{3}{2},-1\right)$
2 points for this
Calculate slope at $\left(\frac{3}{2},-1\right):-1+4\left(\frac{3}{2}\right)=5$
1 point for this
Find the desired approximation: new point is $\left(2, \frac{3}{2}\right)$ 2 points for this
(Technically, the answer is just the 1.5, but if they don't identify it separately, that's okay.)

