1. Solve the DE: $\frac{d y}{d t}+\frac{4}{t} y=\frac{1}{t^{4}}$. [8 points total]

Common sense will dictate that integrating factor should be used...

Find the integrating factor: $\mu(t)=e^{\int p(t) d t}=e^{\int \frac{4}{t} d t}=e^{4 \ln |t|}=t^{4}$
Use the integrating factor: $t^{4}\left(y^{\prime}+\frac{4}{t} y\right)=1$
Modify the left side: $\frac{d}{d t}\left(t^{4} y\right)=1 \Rightarrow d\left(t^{4} y\right)=d t$
Integrate both sides: $\int d\left(t^{4} y\right)=\int d t \Rightarrow t^{4} y=t+C$
Solve for $y: y=\frac{1}{t^{3}}+\frac{C}{t^{4}}$ or $y=\frac{t+C}{t^{4}}$

2 points for this

(they must show an absolute value)

1 point for this

1 point for this
2 points for this
(they must have a constant)
2 points for this
2. Is $y^{\prime \prime \prime}-3 t y^{\prime}+2 y^{2}=t^{3}$ linear or nonlinear? What is the order of the DE? [2 points total]

This equation is nonlinear.
1 point
1 point
Its order is three (or third).
1 point
3. A radioactive substance has a half-life of 3 days. We begin with 12 g of this substance. How much of the substance remains after 1 week (nearest tenth)? [8 points total]

The standard growth equation is $y=y_{0} e^{k t}$
We start with 12 g , so $y=12 e^{k t}$
Use half-life to find $k: 6=12 e^{3 k} \Rightarrow e^{3 k}=\frac{1}{2} \Rightarrow k=\frac{-\ln 2}{3}$,
so $k \approx-0.23104906018664843647241070715273$

Equation becomes $y=12 e^{-0.231 t} \ldots$
Find y when $t=7: y=12 e^{-0.231(7)}$
$\approx 2.3811015779522992121275584589085$ or 2.4 g

2 points
(in case full development is shown)

1 point

3 points

2 points

As specified in the syllabus, two points are deducted for missing name, ID, or recitation section number. Thus, these last two points for required information make this a 20 point quiz.

1. Solve the DE: $\frac{d y}{d t}+\frac{2}{t} y=\frac{1}{t^{2}}$. [8 points total]

Common sense will dictate that integrating factor should be used...

Find the integrating factor: $\mu(t)=e^{\int p(t) d t}=e^{\int \frac{2}{t} d t}=e^{2 \ln |t|}=t^{2}$
Use the integrating factor: $t^{2}\left(y^{\prime}+\frac{2}{t} y\right)=1$
Modify the left side: $\frac{d}{d t}\left(t^{2} y\right)=1 \Rightarrow d\left(t^{2} y\right)=d t$
Integrate both sides: $\int d\left(t^{2} y\right)=\int d t \Rightarrow t^{2} y=t+C$
Solve for $y: y=\frac{1}{t}+\frac{C}{t^{2}}$ or $y=\frac{t+C}{t^{2}}$

2 points for this

(they must show an absolute value)

1 point for this

1 point for this
2 points for this
(they must have a constant)
2 point for this
2. Is $y^{\prime \prime}+4 t y^{\prime}-3 y=t^{3}$ linear or nonlinear? What is the order of the DE? [2 points total]

This equation is linear.
1 point
Its order is two (or second).
1 point
3. A radioactive substance has a half-life of 5 days. We begin with 16 g of this substance. How much of the substance remains after 2 weeks (nearest tenth)? [8 points total]

The standard growth equation is $y=y_{0} e^{k t}$
We start with 16 g , so $y=16 e^{k t}$
Use half-life to find $k: 8=16 e^{5 k} \Rightarrow e^{5 k}=\frac{1}{2} \Rightarrow k=\frac{-\ln 2}{5}$,
so $k \approx-0.13862943611198906188344642429164$
Equation becomes $y=16 e^{-0.1386 t} \ldots$
Find y when $t=14: y=16 e^{-0.1386(14)}$
$\approx 2.2973967099940700135972538935559$ or 2.3 g

2 points
(in case full development is shown)

1 point

3 points

2 points

As specified in the syllabus, two points are deducted for missing name, ID, or recitation section number. Thus, these last two points for required information make this a 20 point quiz.

1. Solve the DE: $\frac{d y}{d t}+\frac{3}{t} y=\frac{1}{t^{3}}$. [8 points total]

Common sense will dictate that integrating factor should be used...

Find the integrating factor: $\mu(t)=e^{\int p(t) d t}=e^{\int \frac{3}{t} d t}=e^{3 \ln |t|}=t^{3}$
Use the integrating factor: $t^{3}\left(y^{\prime}+\frac{3}{t} y\right)=1$
Modify the left side: $\frac{d}{d t}\left(t^{3} y\right)=1 \Rightarrow d\left(t^{3} y\right)=d t$
Integrate both sides: $\int d\left(t^{3} y\right)=\int d t \Rightarrow t^{3} y=t+C$
Solve for $y: y=\frac{1}{t^{2}}+\frac{C}{t^{3}}$ or $y=\frac{t+C}{t^{3}}$

2 points for this

(they must show an absolute value)

1 point for this

1 point for this
2 points for this
(they must have a constant)
2 point for this
2. Is $y^{\prime \prime}-3 t y^{\prime}+2 y=t^{3}$ linear or nonlinear? What is the order of the DE? [2 points total]

This equation is linear.
1 point
Its order is two (or second).
1 point
3. A radioactive substance has a half-life of 2 days. We begin with 12 g of this substance. How much of the substance remains after 1 week (nearest tenth)? [8 points total]

The standard growth equation is $y=y_{0} e^{k t}$
We start with 12 g , so $y=12 e^{k t}$
Use half-life to find $k: 6=12 e^{2 k} \Rightarrow e^{2 k}=\frac{1}{2} \Rightarrow k=\frac{-\ln 2}{2}$,
so $k \approx-0.34657359027997265470861606072909$

Equation becomes $y=12 e^{-0.3466 t} \ldots$
Find y when $t=7: y=12 e^{-0.3466(7)}$
$\approx 1.0606601717798212866012665431573$ or 1.1 g

2 points
(in case full development is shown)

1 point

3 points

2 points

As specified in the syllabus, two points are deducted for missing name, ID, or recitation section number. Thus, these last two points for required information make this a 20 point quiz.

1. Solve the DE: $\frac{d y}{d t}+\frac{5}{t} y=\frac{1}{t^{5}}$. [8 points total]

Common sense will dictate that integrating factor should be used...
Find the integrating factor: $\mu(t)=e^{\int p(t) d t}=e^{\int \frac{5}{t} d t}=e^{5 \ln |t|}=t^{5} \quad 2$ points for this
(they must show an absolute value)
Use the integrating factor: $t^{5}\left(y^{\prime}+\frac{5}{t} y\right)=1$
Modify the left side: $\frac{d}{d t}\left(t^{5} y\right)=1 \Rightarrow d\left(t^{5} y\right)=d t$
Integrate both sides: $\int d\left(t^{5} y\right)=\int d t \Rightarrow t^{5} y=t+C$

Solve for $y: y=\frac{1}{t^{4}}+\frac{C}{t^{5}}$ or $y=\frac{t+C}{t^{5}}$

1 point for this

1 point for this

2 points for this
(they must have a constant)
2 point for this
2. Is $y^{\prime \prime \prime}+4 t y^{\prime}-3 y^{2}=t^{3}$ linear or nonlinear? What is the order of the DE? [2 points total]

This equation is nonlinear.
1 point
Its order is two (or second).
1 point
3. A radioactive substance has a half-life of 4 days. We begin with 16 g of this substance. How much of the substance remains after 2 weeks (nearest tenth)? [8 points total]

The standard growth equation is $y=y_{0} e^{k t}$
We start with 16 g , so $y=16 e^{k t}$
Use half-life to find k : $8=16 e^{4 k} \Rightarrow e^{4 k}=\frac{1}{2} \Rightarrow k=\frac{-\ln 2}{4}$,
So $k \approx-0.17328679513998632735430803036454$

Equation becomes $y=16 e^{-0.1733 t} \ldots$
Find y when $t=14: y=16 e^{-0.1733(14)}$
$\approx 1.4142135623730950488016887242097$ or 1.4 g

2 points
(in case full development is shown)
1 point

3 points

2 points

As specified in the syllabus, two points are deducted for missing name, ID, or recitation section number. Thus, these last two points for required information make this a 20 point quiz.

