Sample Final Problem 1

$x^{\prime \prime}-4 x^{\prime}-5 x=0$ - change it to a system and solve it using chapter 6 techniques...

Converting to a system ~ 10 points

Let $y=x^{\prime}$, which naturally means $y^{\prime}=x^{\prime \prime}$.
Substitute into the original equation to get $y^{\prime}-4 y-5 x=0$.
So, here's our system of two first-order equations: ${ }^{x^{\prime}=y}$

$$
y^{\prime}=5 x+4 y \cdot
$$

We write this in matrix-vector form so we can apply techniques from chapter 6: $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 5 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. If we let the vector $\overrightarrow{\mathbf{x}}=\left[\begin{array}{l}x \\ y\end{array}\right]$, and matrix $\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 5 & 4\end{array}\right]$, then the equation can be written as $\overrightarrow{\mathbf{x}}^{\prime}=\mathbf{A} \overrightarrow{\mathbf{x}}$.

Solving the system ~ 10 points

To solve the system, we know that the first step is to find eigenpairs. So, I'll find the eigenvalues for matrix \mathbf{A}. $\left|\begin{array}{cc}-\lambda & 1 \\ 5 & 4-\lambda\end{array}\right|=0$, so $\lambda^{2}-4 \lambda-5=0 \Rightarrow(\lambda-5)(\lambda+1)=0$, and therefore eigenvalues are $\lambda_{1}=-1$ and $\lambda_{2}=5$.

Now, I will find an eigenvector to pair with $\lambda_{1}=-1$. To do this, I must solve $\left[\begin{array}{ll}1 & 1 \\ 5 & 5\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. (If I were to augment this system and put it in RREF, I'd have $\left[\begin{array}{ll|l}1 & 1 & 0 \\ 5 & 5 & 0\end{array}\right] \Rightarrow\left[\begin{array}{ll|l}1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$.) So, this means that $1 v_{1}+1 v_{2}=0$, or $v_{1}=-v_{2}$; I pick something simple like $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ (any vector having opposite entries would be fine).

Finding an eigenvector to pair with $\lambda_{2}=5$ is an identical process. $\left[\begin{array}{cc|c}-5 & 1 & 0 \\ 5 & -1 & 0\end{array}\right] \Rightarrow\left[\begin{array}{cc|c}1 & -1 / 5 & 0 \\ 0 & 0 & 0\end{array}\right]$, so $-5 v_{1}+v_{2}=0 \Rightarrow v_{2}=5 v_{1}$. I select $\left[\begin{array}{l}1 \\ 5\end{array}\right]$.

My general solution to the system is $\overrightarrow{\mathbf{x}}=c_{1} e^{-t}\left[\begin{array}{c}1 \\ -1\end{array}\right]+c_{2} e^{5 t}\left[\begin{array}{l}1 \\ 5\end{array}\right]$.

Using the initial conditions vector to find the final answer to the IVP ~ 5 points With the initial condition as given, $\overrightarrow{\mathbf{x}}(\overrightarrow{\mathbf{0}})=\left[\begin{array}{l}2 \\ 0\end{array}\right]$, we can substitute in to obtain $\left[\begin{array}{l}2 \\ 0\end{array}\right]=c_{1} e^{0}\left[\begin{array}{c}1 \\ -1\end{array}\right]+c_{2} e^{0}\left[\begin{array}{l}1 \\ 5\end{array}\right]$, which gives us $c_{1}+c_{2}=2$ and $-c_{1}+5 c_{2}=0$. We can easily solve this to obtain $c_{2}=\frac{1}{3}$ and $c_{1}=\frac{5}{3}$. The final solution to the IVP is therefore $\overrightarrow{\mathbf{x}}=\frac{5}{3} e^{-t}\left[\begin{array}{c}1 \\ -1\end{array}\right]+\frac{1}{3} e^{5 t}\left[\begin{array}{l}1 \\ 5\end{array}\right]$.

