Sample Final Problem 2

Solving $y^{\prime \prime}+y^{\prime}-12 y=65 \sin 2 t$, with $y(0)=-1$ and $y^{\prime}(0)=1$
a. using methods of chapter $4 \ldots$

Solve the corresponding homogeneous solution (to find y_{h}) ~ 5 points
$y^{\prime \prime}+y^{\prime}-12 y=0$, so I'll write and solve the characteristic equation: $r^{2}+r-12=0 \Rightarrow(r+4)(r-3)=0$, which gives me $r=-4$ and $r=3$. Thus, my general solution to the corresponding homogeneous equation is the equation $y_{h}=c_{1} e^{-4 t}+c_{2} e^{3 t}$.

Find a particular solution to the original DE (this was called y_{p}) ~ 10 points
I will use the Method of Undetermined Coefficients for this part. So, I suppose that $y_{p}=A \cos 2 t+B \sin 2 t$. That means $y_{p}{ }^{\prime}=-2 A \sin 2 t+2 B \cos 2 t$ and $y_{p}{ }^{\prime \prime}=-4 A \cos 2 t-4 B \sin 2 t$. Plugging these into the original equation yields $-4 A \cos 2 t-4 B \sin 2 t+(-2 A \sin 2 t+2 B \cos 2 t)-12(A \cos 2 t+B \sin 2 t)=65 \sin 2 t$. Now, when I rearrange these terms on the left, I get $(-4 A+2 B-12 A) \cos 2 t+(-4 B-2 A-12 B) \sin 2 t=65 \sin 2 t$. This results in the simple system: $-16 A+2 B=0$ and $-2 A-16 B=65$. I multiply the first equation by 8 , which gives $-128 A+16 B=0$, and then I add this to the second equation, $-130 A=65$, so $A=-\frac{1}{2}$. Then, it's easy to see that $B=-4$. From this work, I know that a particular solution is $y_{p}=-\frac{1}{2} \cos 2 t-4 \sin 2 t$, and a general solution to the whole DE is $y(t)=c_{1} e^{-4 t}+c_{2} e^{3 t}-\frac{1}{2} \cos 2 t-4 \sin 2 t$.

Determine the arbitrary constants using initial conditions ~ 10 points

I already know the general equation $y(t)$, and since $y(0)=-1$, I substitute in: $-1=c_{1}+c_{2}-\frac{1}{2}$, which can simplify to $c_{1}+c_{2}=-\frac{1}{2}$. Next, I find the derivative $y^{\prime}=-4 c_{1} e^{-4 t}+3 c_{2} e^{3 t}+\sin 2 t-8 \cos 2 t$, and since $y^{\prime}(0)=1$, I know that $1=-4 c_{1}+3 c_{2}-8$, or $-4 c_{1}+3 c_{2}=9$. I multiply the first equation in my system by 4 , which gives $4 c_{1}+4 c_{2}=-2$, and then I add that to the second equation: $7 c_{2}=7$, so $c_{2}=1$. It is then easy to see that $c_{1}=-\frac{3}{2}$. My final answer to the IVP is $y(t)=-\frac{3}{2} e^{-4 t}+e^{3 t}-\frac{1}{2} \cos 2 t-4 \sin 2 t$.
b. using the LaPlace transform and its inverse...

Take the transform of both sides ~ 10 points $\mathscr{L}\left\{y^{\prime \prime}+y^{\prime}-12 y\right\}=\mathscr{L}\{65 \sin 2 t\}$, so $\mathscr{L}\left\{y^{\prime \prime}\right\}+\mathscr{L}\left\{y^{\prime}\right\}-12 \mathscr{L}\{y\}=65 \mathscr{L}\{\sin 2 t\}$ by linearity. Now, we apply the principles as to how the transform deals with derivatives, and evaluate the right side using the table:
$s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+(s \mathscr{L}\{y\}-y(0))-12 \mathscr{L}\{y\}=65\left(\frac{2}{s^{2}+4}\right)$. On the left side, we know that $y(0)=-1$ and $y^{\prime}(0)=1$, so we substitute those in: $s^{2} \mathscr{L}\{y\}+s-1+s \mathscr{L}\{y\}+1-12 \mathscr{L}\{y\}=65\left(\frac{2}{s^{2}+4}\right)$. Now, I can simply collect and factor the terms involving the transform, $\mathscr{L}\{y\}\left(s^{2}+s-12\right)+s=65\left(\frac{2}{s^{2}+4}\right)$, or equivalently $\mathscr{L}\{y\}\left(s^{2}+s-12\right)=65\left(\frac{2}{s^{2}+4}\right)-s$. Before I continue with anything further, let me "clean up" the right side a bit... $65\left(\frac{2}{s^{2}+4}\right)-s=\frac{130}{s^{2}+4}+\frac{(-s)\left(s^{2}+4\right)}{s^{2}+4}$, which becomes $\frac{130-s^{3}-4 s}{s^{2}+4}=\frac{-s^{3}-4 s+130}{s^{2}+4}$. So, my equation above involving the transform is simply $\mathscr{L}\{y\}\left(s^{2}+s-12\right)=\frac{-s^{3}-4 s+130}{s^{2}+4}$, which means $\mathscr{L}\{y\}=\frac{-s^{3}-4 s+130}{\left(s^{2}+4\right)(s-3)(s+4)}$.

Find the solution using the inverse transform ~ 15 points

This is just going to be tedious algebra, but it's not terribly difficult. I'll use partial fraction separation on the transform $\frac{-s^{3}-4 s+130}{\left(s^{2}+4\right)(s-3)(s+4)}=\frac{A s+B}{s^{2}+4}+\frac{C}{s-3}+\frac{D}{s+4}$. Putting these "back together" is a bit of a pain, but yields $\frac{(A s+B)(s-3)(s+4)+C\left(s^{2}+4\right)(s+4)+D\left(s^{2}+4\right)(s-3)}{\left(s^{2}+4\right)(s-3)(s+4)}$. I distribute out the numerator, then factor it, resulting in $\frac{(A+C+D) s^{3}+(A+B+4 C-3 D) s^{2}+(-12 A+B+4 C+4 D) s+(-12 B+16 C-12 D)}{\left(s^{2}+4\right)(s-3)(s+4)}$, and I can now establish my system: $A+C+D=-1, A+B+4 C-3 D=0,-12 A+B+4 C+4 D=-4$, and finally, $-12 B+16 C-12 D=130$. Multiply the first equation by $-4:-4 A-4 C-4 D=4$, then add it to the third equation: $-16 A+B=0$, so $B=16 A$. Plug this into the second equation: $17 A+4 C-3 D=0$, and the fourth equation: $-192 A+16 C-12 D=130$, and combine with $A+C+D=-1$ so we now have a $3 x 3$ system. Multiply this last equation by $3: 3 A+3 C+3 D=-3$, add to $17 A+4 C-3 D=0$, gives $20 A+7 C=-3$. Multiply $A+C+D=-1$ by $12: 12 A+12 C+12 D=-12$, then add to $-192 A+16 C-12 D=130$ to get $-180 A+28 C=118$, with $20 A+7 C=-3$ is 2×2 system. Multiply second equation by $-4:-80 A-28 C=12$, then add $-260 A=130$, so $A=-\frac{1}{2}$, meaning $B=-8$. Also, $20 A+7 C=-3$ yields $-10+7 C=-3$, or $C=1$. Finally, since $A+C+D=-1$, we get $D=-\frac{3}{2}$. Whew... Thus, our solution to the IVP is found as follows: $y=\mathscr{L}^{-1}\left\{\frac{-\frac{1}{2} s-8}{s^{2}+4}+\frac{1}{s-3}+\left(\frac{-\frac{3}{2}}{s+4}\right)\right\}=\mathscr{L}^{-1}\left\{-\frac{1}{2}\left(\frac{s}{s^{2}+4}\right)-4\left(\frac{2}{s^{2}+4}\right)+\left(\frac{1}{s-3}\right)-\frac{3}{2}\left(\frac{1}{s+4}\right)\right\}$, and these can all be picked up from the table now: $y(t)=-\frac{1}{2} \cos 2 t-4 \sin 2 t+e^{3 t}-\frac{3}{2} e^{-4 t}$. I'm really glad it worked out... ©)

