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factorable, so we apply the quadratic formula: i32
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complex, we quickly know several things – namely, that the trajectories are spirals about the equilibrium at the 
origin, and that the stability of the origin is only dependent on the sign of the real part of the complex 
eigenvalues.  Since ii 32 ±−=±= βαλ , we know that 02 <−=α , and so the equilibrium at the origin is 
asymptotically stable, and called an attracting spiral or spiral sink.  Thus, just from knowing the eigenvalues, I 
am able to answer the final parts of the question.  I still have to write the general solution, so I go on to find an 
eigenvector (remember I only need one eigenpair to find the general solution when eigenvalues are complex). 
 

So I choose the eigenvalue i32 +−  and look for an eigenvector: ⎥
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