Sample Final Problem 5

Solving $\overrightarrow{\mathbf{x}}=\left[\begin{array}{cc}-2 & -3 \\ 3 & -2\end{array}\right] \overrightarrow{\mathbf{x}}$ using techniques of chapter 6
I find eigenvalues for the matrix $\mathbf{A}=\left[\begin{array}{cc}-2 & -3 \\ 3 & -2\end{array}\right]$ from the characteristic equation: $\left|\begin{array}{cc}-2-\lambda & -3 \\ 3 & -2-\lambda\end{array}\right|=0$. This gives me $(-2-\lambda)(-2-\lambda)-(-3)(3)=0 \Rightarrow \lambda^{2}+4 \lambda+4+9=0 \Rightarrow \lambda^{2}+4 \lambda+13=0$. This quadratic is not factorable, so we apply the quadratic formula: $\lambda=\frac{-4 \pm \sqrt{4^{2}-4(1)(13)}}{2(1)}=-2 \pm 3 i$. When eigenvalues are complex, we quickly know several things - namely, that the trajectories are spirals about the equilibrium at the origin, and that the stability of the origin is only dependent on the sign of the real part of the complex eigenvalues. Since $\lambda=\alpha \pm \beta i=-2 \pm 3 i$, we know that $\alpha=-2<0$, and so the equilibrium at the origin is asymptotically stable, and called an attracting spiral or spiral sink. Thus, just from knowing the eigenvalues, I am able to answer the final parts of the question. I still have to write the general solution, so I go on to find an eigenvector (remember I only need one eigenpair to find the general solution when eigenvalues are complex).

So I choose the eigenvalue $-2+3 i$ and look for an eigenvector: $\left[\begin{array}{cc}-2-(-2+3 i) & -3 \\ 3 & -2-(-2+3 i)\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, so $\left[\begin{array}{cc|c}-3 i & -3 & 0 \\ 3 & -3 i & 0\end{array}\right] \Rightarrow\left[\begin{array}{cc|c}1 & -i & 0 \\ 0 & 0 & 0\end{array}\right]$ in RREF. This gives the relationship $v_{1}-i v_{2}=0 \Rightarrow v_{1}=i v_{2}$, so I'll choose $\left[\begin{array}{l}i \\ 1\end{array}\right]$, which I must think of as $\left[\begin{array}{l}0 \\ 1\end{array}\right]+i\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Now, I simply have to identify all of the things I need: $\alpha=-2, \beta=3$ (chosen positive for convenience, as always), $\overrightarrow{\mathbf{p}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ (the real part of the eigenvector), $\overrightarrow{\mathbf{q}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ (the imaginary part of the eigenvector).

General solution to the equation is $\overrightarrow{\mathbf{x}}(t)=c_{1} e^{-2 t}\left(\cos 3 t\left[\begin{array}{l}0 \\ 1\end{array}\right]-\sin 3 t\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)+c_{2} e^{-2 t}\left(\sin 3 t\left[\begin{array}{l}0 \\ 1\end{array}\right]+\cos 3 t\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$.

