
Sample Test Problem Solutions – MA 232 
 

1. 
G
Hk

dt
dA

=  

2. Ctvdtdvdtdv
dt
dva +−=⇒−=⇒−=⇒−== ∫∫ 2.322.322.322.32 .  Since v = 0 when t = 0, we have 

C = 0, so v = –32.2t. 
 

 sCtsdttdsdttdst
dt
dsv +−=⇒−=⇒−=⇒−== ∫∫ 21.162.322.322.32 .  Since s (the height off the 

ground) is 1,454 when t = 0, sC =1,454, so 454,11.16 2 +−= ts . 
 
 s = 0 when the marble hits the ground, so 53.9014541.16 2 =⇒=+− tt  seconds.  Thus, v(9.53) will 

give us the desired result: –32.2(9.53) = –306.96 
sec
ft .  Answer must be negative since velocity was 

requested. 
 

 Note that under some circumstances, using the approximate gravitational constant of 2sec
ft32−  will be 

sufficient.  Be sure to read any problem involving gravity carefully, in case a particular value needs to 
be used. 

 
3. yty −='  has no equilibria, since t – y = 0 implies y = t, which depends on t.  However, this can give us 

our first isocline, so along the line y = t, we can sketch direction field segments with a slope of zero.  
Other isoclines would also be parallel lines to this one, since setting  t – y = c  will always yield the 
equation  y = t – c.  In fact, setting t – y = 1, which will yield the line  y = t – 1, gives an actual solution 
to the DE (we can verify this quite easily). 

 
 Sample solution curves that start above this linear solution decrease toward it, then turn and approach it 

asymptotically (always staying concave up).  Sample solution curves that start below the linear solution 
head upward approaching it asymptotically, always staying concave down.  A few possibilities are 
shown in the diagram below. 

 

  



4. 
y

ty
21

2'
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= , y(2) = 0 – this is a separable DE.  ∫ ∫=+⇒=+ dttdyydttdyy 2)21(2)21( , so we have 

Ctyy +=+ 22 .  Since we know the initial condition y(2) = 0, then 0 = 4 + C, so C = –4.  Thus, the 
solution is 422 −=+ tyy .  We can just leave this implicitly defined – don’t get confused thinking you 
should solve it explicitly for y in terms of t! 

 
5. 23' yyy −=  has two equilibria: ( )yyy −= 3' , so y = 0 and y = 3 are both equilibria.  A phase-line graph 

with testing in the three intervals of y will help to see stability information easily.  As it turns out, if 
y < 0, we have negative slopes, if 0 < y < 3 we have positive slopes, and if y > 3 we have negative 
slopes.  Thus, y = 0 is unstable, and y = 3 is stable.  This is shown in the diagram below, with a couple of 
sample solutions and the equilibrium solutions graphed. 

 

 
 

6. We want to find the second derivative 2

2

dt
yd  for the differential equation tyy 4' 2 −= .  So, we must 

differentiate the equation using implicit differentiation and the chain rule as appropriate: 
 

 ( ) 48244242'' 32 −−=−−=−⎟
⎠
⎞

⎜
⎝
⎛= ytytyy

dt
dyyy .  Now, 0'' =y  when 0482 3 =−− yty , which (solved 

for t for convenience, as mentioned in the directions) yields 
y

y
y
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42 33 −
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−
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7. We need to perform Euler’s method, with step size of 0.5, twice on the IVP yty +=' , with y(1) = 3.  

So, our starting point is (1, 3).  Calculating the slope, we have 231 =+ , so our slope is 2: “up 2, right 
1,” if you wish.  However, we’re using a step size of 0.5, so we’ll only go “up 1, right 0.5,” and our new 
point is (1.5, 4).  Now, we repeat the process from this new location.  Our new slope calculates to be 

3452.25.545.1 ≈=+ .  Since our step size is 0.5, our second approximation point is (2, 5.1726).  I’d 
have to make it clear to what accuracy I wanted this answer, such as nearest tenth, etc. 

 



 Now, we’re also supposed to do this approximation with RK-2, which is just a little more complex.  
Initially, we do the same thing at (1, 3), calculating a slope of 2.  But, instead of using this slope to take 
a step, we take a “pretend half-step” so we can calculate a modified slope.  Our “pretend half-step” will 

be to ⎟
⎠
⎞

⎜
⎝
⎛

2
7,

4
5 , so now we calculate a “usable” slope there: 18.2

4
19

2
7

4
5

≈=+ , so now we use that 

slope to take an actual step.  We end up at (1.5, ~4.09).  We repeat the process: find our (Euler) slope at 

this point, which is 3643.259.509.45.1 ≈=+ , then take a “pretend half-step” to ⎟
⎠
⎞

⎜
⎝
⎛ 681.4,

4
7 , and 

calculate a usable slope at that location: 54.2431.6681.475.1 ≈=+ .  Using this slope, we take our 
second (and final) step to arrive at (2, ~5.36).  Whew…  Again, I’d have to make expected accuracy 
clear, or else make it so things worked our more cleanly! 

 
8. a. Second-order, linear (with variable coefficients), and homogeneous. 
 b. Third-order, non-linear. 
 
9. Solving teyy 3' =−  with integrating factor method (recall the standard form of this equation is 

)()(' tfytpy =+ ).  We must find tdtdttp
eeet −−

=∫=∫=
1)(

)(μ , then multiply both sides by this 

integrating factor: ( ) ( ) ( ) ( ) ∫∫ =⇒=⇒=⇒=− −−−−− dteyeddteyedeye
dt
deeyye ttttttttt 2223' , so 

t
t
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t
tt Ceey

e
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e
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−
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1 32

2 .  If this were an IVP, we would use the initial 

condition to determine the value of C. 
 
 Now, we’re also asked to solve this using Euler-Lagrange process…  To begin E-L, we must solve the 

associated homogeneous equation: 0' =−yy .  This can be done easily by separation of variables, so 
t

h eCyCtydt
y

dyy
dt
dy *ln =⇒+=⇒=⇒= ∫∫ .  This is easily verified as a general solution.  The 

second part of E-L requires us to suppose that t
p etvy )(= , and we can find )(tv  using the formula: 

( )( )
2

)()(
2

23)(
t

tttdttp edtedteedtetftv ===∫= ∫∫∫ −  (no integration constant is needed here).  Then, we 

can write our particular solution 
2

3t

p
ey = .  Finally, we can write the general solution by adding these 

results: 
2

*)(
3t

t
ph

eeCyyty +=+= .  We can see that our results from each method agree. 

 

10. dtk
y

dykyy =⇒=' , so after integrating both sides, we obtain Ckty +=ln , which gives us kteyy 0= , 

since we know that y = y0 when t = 0.  So, to find tD, we solve Dkteyy 002 =  for tD: 
k

te D
ktD

2ln2 =⇒= . 

 
11. The formula for accumulation of continuously compounded interest is rteAA 0= .  We know A0 = 0.50, 

and we know r = 0.06.  Further, 160 years had passed, which is our t value (measured in years).  So, we 
have ( ) === 6.916006.0 5.050.0 eeA  7,382.39.  That’s not bad from fifty cents! 

 



12. Let x represent the amount of salt (in lbs) that is in the tank at any time t.  Since we start with a tank (300 
gals) of fresh water, we know that when t = 0, x = 0.  We must determine “rate in” and “rate out” (of the 
salt) so that we can write our differential equation. 

 
 Rate in = (incoming concentration level) x (incoming flow rate) = 1 lb/gal x 3 gal/min = 3 lb/min 

 Rate out = (outgoing concentration level) x (outgoing flow rate) = 
gal
lb

2300 t
x
+

 x 1 gal/min = 

min
lb

2300 t
x
+

 

 

 So, our DE is 
t

x
dt
dx

2300
3

+
−= , which can be rewritten as 3

2300
1

=
+

+ x
tdt

dx , so we recognize it as a 

linear, non-homogeneous first-order DE, which we can solve by integrating factor method. 
 

 teeet
t

t
dt

dttp
2300)(

)2300ln(
2
1

2300)(
+==∫=∫=

+
+μ , so we multiply both sides by this: 

 tx
tdt

dxt 23003
2300

12300 +=⎟
⎠
⎞

⎜
⎝
⎛

+
++ .  This problem is a little “less obvious” when it comes to 

converting the left side to a single derivative, but we can multiply it (the left side) out if we need to 

check on details: tx
tdt

dxt 23003
2300

12300 +=
+

++ .  For those who have discovered “the 

trick,” this one follows the same pattern as all the others, of course.  Now, thinking of the product rule 

(backwards), we should be able to see that we have ( ) ttx
dt
d 230032300 +=+  or 

( ) dtttxd 230032300 +=+ .  We can now integrate both sides: ( ) Cttx ++=+ 2
3

23002300 , so 

t
Cttx

2300
2300)(

+
++= .  Since we know that x = 0 when t = 0, C is quickly found: 

33000
300

3000 −=⇒+= CC , and our completed equation is 
t

ttx
2300
330002300)(

+
−+= .  Now, 

since the net increase in solution in the tank is 2 gal/min, it will take 150 minutes to fill the tank to the 
top, so we want to find the salt content when t = 150.  

≈−=−=−+=
2
1300600

610
33000600

600
33000300300)150(x  387.9 lbs. 

 

13. ⎟
⎠
⎞

⎜
⎝
⎛ −=−=

200000
1200000)200000( NNkNkN

dt
dN  (in logistic form).  We know that when t = 0, N = 1 

and when t = 1 (week), N = 1000. 
 
 Equilibrium solutions (which are easier to find from above before putting it in logistic form) are 

obviously N = 0 and N = 200000.  Since the equilibrium at N = 200000 is stable, the carrying capacity is 
200000. 

 



 Logistic solution (without work, simply by reference) is 
kte

tN
2000001

1
2000001

200000)(
−⎟

⎠
⎞

⎜
⎝
⎛ −+

= , and we can 

use our conditions to find –200000k: 2001999991
1999991

2000001000 200000
200000 =+⇒

+
= −

−
k

k e
e

, which 

means ≈=−⇒=−

199999
199ln200000

199999
199200000 ke k  –6.9127628.  So, our final solution equation is 

te
tN 9127628.61999991

200000)( −+
= . 

 
 To determine how long it will take for half of the population to hear about the rumor, solve this equation 

with N(t) = 100000.  This means te 9127628.61999991
200000100000 −+

= , 21999991 9128.6 =+ − te , so then 

199999
19128.6 =− te , which gives us 766.1

9128.6
199999

1ln
=

−
=t , so in less than two weeks! 

 

14. System: y
dt
dx

=  and yx
dt
dy 35 += .  V-nullclines are found when 0=

dt
dx , so clearly y = 0 is the only 

one.  H-nullclines are found when 0=
dt
dy , and so the only one is when 5x + 3y = 0, or xy

3
5

−= .  Thus, 

(0, 0) is the only equilibrium point. 
 
  



The plane is now divided into four regions by these nullclines. 
However, it’s pretty convenient – we can just try the points 

( )1,1 ±±  for direction, remembering that 
dt

dx
dt

dy

dx
dy

= .  So, at 

(1, 1) we have 1=
dt
dx  (positive, so to the right), and 8=

dt
dy  

(positive, so upward).  It is equally simple to test the other three 
regions.  The only equilibrium point is unstable; it clearly repels 
nearby trajectories in two directions. 

 
15. A tank initially contains 100 gallons of pure water. Water with a dissolved salt concentration of 1 gram 

per gallon begins to flow in at a rate of 2 gallons per minute. At the same time, the well-mixed salt 
solution in the tank is being pumped out at a rate of 3 gallons per minute. How many minutes does it 
take for the amount of salt in the tank to reach a maximum? 

 
 So we had established some of the basic setup for this in class the day we looked at it.  We let x(t) 

represent the grams of salt in the tank after t minutes.  We know that x(0) = 0.  We also know that the 

differential equation is 
t
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This is linear, first-order, and we can solve it using integrating factor.  We have 2
100

3' =
−

+ x
t

x , so our 

integrating factor is 
( )3

100ln3100
3
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t
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−
==∫= −−−μ .  We multiply both sides by this, which 

yields 
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1 , so after integrating, 

we get 
( ) ( )

C
t

x
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+
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=
− 23 100

1
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1 .  Since we know x(0) = 0, we quickly determine that 
10000

1
−=C , 

so our equation is ( )
10000

100100)(
3tttx −

−−= .  Now, we wish to maximize this function (essentially a 

Calculus problem).  So, let’s take its derivative and set it equal to zero…  ( ) 0
10000
10031)('

2

=
−

+−=
ttx , so 

( ) ( )
3

100100
3

100100
3

10000100100001003 22 ±=⇒
±

=−⇒=−⇒=− tttt .  We notice that t can not 

be greater than 100, since the tank will be empty in 100 minutes, so 3.42
3

100100 ≈−=t  minutes.  The 

amount of salt in the tank will be maximum after 42.3 minutes.  I could ask for this to the nearest 
second, obviously. 


