MA 232 - Straight - Spring 2008

Solutions to Sample Test 2 Problems

1. For the vector $\overrightarrow{\mathbf{x}}=[2,-1,5,0],\|\overrightarrow{\mathbf{x}}\|=\sqrt{2^{2}+(-1)^{2}+5^{2}+0^{2}}=\sqrt{30}$.
2. $\mathbf{A}=\left[\begin{array}{cc}2 & -1 \\ 3 & 0 \\ 1 & -1\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{cccc}-3 & 0 & 2 & 0 \\ 1 & 4 & -1 & 2\end{array}\right]$ can be multiplied, since \mathbf{A} is 3×2 and \mathbf{B} is 2×4, so their
dimensions are compatible. The product $\mathbf{A B}$ is therefore $3 \times 4:\left[\begin{array}{cccc}-7 & -4 & 5 & -2 \\ -9 & 0 & 6 & 0 \\ -4 & -4 & 3 & -2\end{array}\right]$.
3. $\quad \mathbf{A}=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right]$, so $\mathbf{A}^{T}=\left[\begin{array}{ll}2 & 4 \\ 3 & 5\end{array}\right]$ and $\mathbf{B}^{T}=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]$. Further, $(\mathbf{A}+\mathbf{B})^{T}=\left[\begin{array}{cc}8 & 10 \\ 12 & 14\end{array}\right]^{T}$, which is $\left[\begin{array}{cc}8 & 12 \\ 10 & 14\end{array}\right]$. Now, $\mathbf{A}^{T}+\mathbf{B}^{T}=\left[\begin{array}{cc}8 & 12 \\ 10 & 14\end{array}\right]$ as well, so we have verified the desired result. Note that this is not a proof!
4. The system in matrix form: $\left[\begin{array}{ccc}1 & -3 & 2 \\ 2 & 1 & -3 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}4 \\ 1 \\ -2\end{array}\right]$. As an augmented matrix, the system would appear as follows: $\left[\begin{array}{ccc|c}1 & -3 & 2 & 4 \\ 2 & 1 & -3 & 1 \\ 1 & -1 & 1 & -2\end{array}\right]$. This system could easily be solved without a lot of extra time by using the matrix features of your calculator - this could be expected on the exam.
5. The inverse of the matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 2 \\ 2 & 1 & 1\end{array}\right]$ is $\left[\begin{array}{ccc}-\frac{1}{3} & -\frac{1}{3} & 1 \\ \frac{2}{3} & -\frac{1}{3} & 0 \\ 0 & 1 & -1\end{array}\right]$. This can be found easily on a calculator. You could be expected to verify it is the inverse by performing the product of \mathbf{A} and its inverse to get the identity matrix \mathbf{I}_{3}. You could also be asked specifically to find an inverse by using Gauss-Jordan reduction, for which you'd have to show all ERO steps.
6. For the matrix $\mathbf{A}=\left[\begin{array}{ll}3 & 5 \\ 7 & 9\end{array}\right]$, the determinant is simply (3)(9) $-(5)(7)=27-35=-8$.
7. In matrix form, the equation is $\left[\begin{array}{cc}2 & -5 \\ 3 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}4 \\ -2\end{array}\right]$, or $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$. Cramer's rule says we need to find the determinant of \mathbf{A}, which is $|\mathbf{A}|=4-(-15)=19$. We also need two other matrices \mathbf{A}_{1} and \mathbf{A}_{2}, which are
found by replacing a column of \mathbf{A} with the values from vector $\overrightarrow{\mathbf{b}}$. So, $\mathbf{A}_{1}=\left[\begin{array}{cc}4 & -5 \\ -2 & 2\end{array}\right]$, and $\left|\mathbf{A}_{1}\right|=-2$.
Also, $\mathbf{A}_{2}=\left[\begin{array}{cc}2 & 4 \\ 3 & -2\end{array}\right]$, and $\left|\mathbf{A}_{2}\right|=-16$. So, the solutions are $x=\frac{\left|\mathbf{A}_{1}\right|}{|\mathbf{A}|}=-\frac{2}{19}$ and $y=\frac{\left|\mathbf{A}_{2}\right|}{|\mathbf{A}|}=\frac{16}{19}$.
8. Augment the given matrix with the identity: $\left[\begin{array}{ccc|ccc}1 & -2 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1\end{array}\right]$, then use Gauss-Jordan reduction to obtain RREF. This is made a littler simpler by the fact the we start with an upper triangular matrix. I'll start by negating the third row $\left(R_{3}{ }^{*}=-R_{3}\right):\left[\begin{array}{ccc|ccc}1 & -2 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1\end{array}\right]$. Then, I'll do $R_{2}{ }^{*}=R_{2}+R_{3}$ to get $\left[\begin{array}{ccc|ccc}1 & -2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & -1\end{array}\right]$. Now, I'll do $R_{1}{ }^{*}=R_{1}+2 R_{2}-2 R_{3}$ (combining a couple of steps), which gives me $\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & -1\end{array}\right]$. So the inverse $\mathbf{A}^{-1}=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & -1\end{array}\right]$.
9. Ah - a third-order DE - but it's homogeneous! So we find the characteristic equation, which is $r^{3}-5 r^{2}+17 r-13=0$. We don't have any really good ways to solve cubics, so it better be something we can work with pretty easily. I notice (because I check it out) that $r=1$ gives me 0 , so $r=1$ is a characteristic root. So, I can divide out the polynomial, or use synthetic division, to determine the rest.

$$
\begin{aligned}
& r - 1 \longdiv { r ^ { 2 } - 4 r + 1 3 } \\
& 1 \longdiv { 1 \quad - 5 \quad 1 7 \quad - 1 3 } \\
& -\left(r^{3}-r^{2}\right) \\
& \begin{array}{lll|l}
1 & -4 & 13 & 0
\end{array} \\
& -4 r^{2}+17 r \\
& -\left(-4 r^{2}+4 r\right) \\
& 13 r-13 \\
& 13 r-13
\end{aligned}
$$

Ultimately, we can see that $r^{3}-5 r^{2}+17 r-13=(r-1)\left(r^{2}-4 r+13\right)$, so the characteristic roots are $r=1$, and $r=2 \pm 3 i$, so $\alpha=2$ and $\beta=3$. Thus, my general solution is $y(t)=c_{1} e^{t}+c_{2} e^{2 t} \cos 3 t+c_{3} e^{2 t} \sin 3 t$.
10. 7-lb object, so mass $m=\frac{7}{32}$ slugs. No friction, so damping constant $b=0$. To find the spring constant, we know $k=\frac{7 \mathrm{lb}}{4 \text { in }}=\frac{7 \mathrm{lb}}{1 / 3 \mathrm{ft}}=21 \frac{\mathrm{lb}}{\mathrm{ft}}$. So, our equation is $\frac{7}{32} \ddot{x}+21 x=0$, since no forcing function is given. Also, our initial conditions are specified: $x(0)=\frac{1}{4}$ (3 inches converted to ft), and $\dot{x}(0)=1.5$.

To solve undamped, unforced oscillation, we calculate $\omega_{0}=\sqrt{\frac{k}{m}}=\sqrt{\frac{21}{7 / 32}}=\sqrt{96}=4 \sqrt{6}$. Thus, our general solution is $x(t)=c_{1} \cos 4 \sqrt{6} t+c_{2} \sin 4 \sqrt{6} t$. So, $\dot{x}(t)=-c_{1} 4 \sqrt{6} \sin 4 \sqrt{6} t+c_{2} 4 \sqrt{6} \cos 4 \sqrt{6} t$ and we can find the parameters using the ICs. $\frac{1}{4}=c_{1}$ from the first IC, and from the second IC, we obtain $\frac{3}{2}=c_{2} 4 \sqrt{6}$, so $c_{2}=\frac{3}{8 \sqrt{6}}=\frac{\sqrt{6}}{16}$. So my equation of motion is $x(t)=\frac{1}{4} \cos 4 \sqrt{6} t+\frac{\sqrt{6}}{16} \sin 4 \sqrt{6} t$.
11. This is kind of like problem 9, only backwards. We're given two characteristic roots, and we know there must be three, since it's a third-order DE. Since complex roots appear in conjugate pairs, we know that all three characteristic roots will be $-4,2-i$, and $2+i$. Using the two complex roots, we can quickly write a quadratic equation using the sum and product properties: for the general quadratic equation $a r^{2}+b r+c=0$, the sum of the roots is $-\frac{b}{a}$ and the product of the roots is $\frac{c}{a}$. Since the sum of $2-i$ and $2+i$ is 4 , we know $-\frac{b}{a}=4$. The product of $2-i$ and $2+i$ is $4-i^{2}=5$, so $\frac{c}{a}=5$. We can say that $a=1, b=-4$, and $c=5$, so a quadratic equation with roots of $2-i$ and $2+i$ is simply $r^{2}-4 r+5=0$. Now, since the other characteristic root is -4 , we can just multiply this quadratic by $r+4$, which will yield $(r+4)\left(r^{2}-4 r+5\right)=r^{3}-11 r+20=0$. Thus, our original DE could have been the equation $y^{\prime \prime \prime}-11 y^{\prime}+20 y=0$. The solution to the DE (which could have been written at the start), is simply $y(t)=c_{1} e^{-4 t}+c_{2} e^{2 t} \cos t+c_{3} e^{2 t} \sin t$.
12. First, put DE in standard form, since some methods (Variation of Parameters, in particular) will require it: $y^{\prime \prime}+2 y^{\prime}-3 y=\frac{3}{2} \cos t+\frac{1}{2} t^{2}-\frac{5}{2} t$. (My problem originally had a typo.)

Now, find y_{h} by solving $y^{\prime \prime}+2 y^{\prime}-3 y=0$. Use characteristic roots: $r^{2}+2 r-3=0 \Rightarrow(r+3)(r-1)=0$, so $r=-3,1$. Thus, $y_{h}=c_{1} e^{-3 t}+c_{2} e^{t}$.

Next, find y_{p} (I'll do this in two pieces, $y_{p_{1}}$ and $y_{p_{2}}$.) $y_{p_{1}}$: I'm solving $y^{\prime \prime}+2 y^{\prime}-3 y=\frac{3}{2} \cos t$ by undetermined coefficients, so let $y_{p_{1}}=A \cos t+B \sin t$. This means $y_{p_{1}}{ }^{\prime}=-A \sin t+B \cos t$ and $y_{p_{1}}{ }^{\prime \prime}=-A \cos t-B \sin t$. Subbing these into our $D E$ in the previous line gives (eventually) $(-A+2 B-3 A) \cos t+(-B-2 A-3 B) \sin t=\frac{3}{2} \cos t$, so $-4 A+2 B=\frac{3}{2}$ and $-2 A-4 B=0$, so $-10 A=3 \Rightarrow A=-\frac{3}{10}$, thus $B=\frac{3}{20}$. So, $y_{p_{1}}=-\frac{3}{10} \cos t+\frac{3}{20} \sin t$.

I now find $y_{p_{2}}$ by solving $y^{\prime \prime}+2 y^{\prime}-3 y=\frac{1}{2} t^{2}-\frac{5}{2} t$, again using undetermined coefficients. This time, I'll set $y_{p_{2}}=C t^{2}+D t+E$ (since it's a poor habit to repeat use of unknowns within a problem). That means
$y_{p_{2}}{ }^{\prime}=2 C t+D$ and $y_{p_{2}}{ }^{\prime \prime}=2 C$. So (eventually) $(-3 C) t^{2}+(4 C-3 D) t+(2 C+2 D-3 E)=\frac{1}{2} t^{2}-\frac{5}{2} t$,
meaning that $C=-\frac{1}{6}, D=\frac{11}{18}$, and $E=\frac{8}{27}$. We now have $y_{p_{2}}=-\frac{1}{6} t^{2}+\frac{11}{18} t+\frac{8}{27}$.
So, $y_{p}=-\frac{3}{10} \cos t+\frac{3}{20} \sin t-\frac{1}{6} t^{2}+\frac{11}{18} t+\frac{8}{27}$, and I'll cop out \odot by saying $y(t)=y_{h}+y_{p}$ is the final solution (you'll need to write it out on the exam).
13. We still need to find y_{h} first, to determine our basis $\left\{y_{1}, y_{2}\right\}$. So, let's solve $y^{\prime \prime}+2 y^{\prime}+y=0$. Characteristic equation is $r^{2}+2 r+1=0 \Rightarrow r=-1$ is the (repeated) characteristic root. The general y_{h} solution is $y_{h}=c_{1} e^{-t}+c_{2} t e^{-t}$, and our basis functions could be $y_{1}=e^{-t}$ and $y_{2}=t e^{-t}$. (We will also need to determine that $y_{1}{ }^{\prime}=-e^{-t}$ and $y_{2}{ }^{\prime}=-t e^{-t}+e^{-t}$, or $y_{2}{ }^{\prime}=e^{-t}(1-t)$.)

Now, on to variation of parameters. We want to look for a particular solution $y_{p}=v_{1} y_{1}+v_{2} y_{2}$, subject to the auxiliary condition that $y_{1} v_{1}{ }^{\prime}+y_{2} v_{2}{ }^{\prime}=0$ (the first equation in the resulting system). The second equation in the resulting system comes from the general work we did in class - which does not need to be shown, and is $y_{1}{ }^{\prime} v_{1}{ }^{\prime}+y_{2}{ }^{\prime} v_{2}{ }^{\prime}=f(t)$. From these (general) equations, we now write our (specific) system: $e^{-t} v_{1}{ }^{\prime}+t e^{-t} v_{2}{ }^{\prime}=0$ and (from the derivatives found above) $-e^{-t} v_{1}{ }^{\prime}+e^{-t}(1-t) v_{2}{ }^{\prime}=e^{-t} \ln t$. This system is pretty easy to solve algebraically (so I won't use the Cramer's rule formulas, involving the Wronskian). I can add the two equations as they are written and get $e^{-t}\left(v_{2}{ }^{\prime}\right)=e^{-t} \ln t$, so $v_{2}{ }^{\prime}=\ln t$. Then I can sub this back in (to either equation) and get $v_{1}{ }^{\prime}=-t \ln t$. Now I have to integrate to find v_{1} and v_{2}. $v_{1}=\int-t \ln t d t=-\frac{t^{2}}{2} \ln t-\frac{t^{2}}{4}$, using integration by parts. $v_{2}=\int \ln t d t=t \ln t-t$, also by parts. Thus, my particular solution is $y_{p}=e^{-t}\left(-\frac{t^{2}}{2} \ln t-\frac{t^{2}}{4}\right)+t e^{-t}(t \ln t-t)$.
Final answer to the original DE: $y(t)=c_{1} e^{-t}+c_{2} t e^{-t}+e^{-t}\left(-\frac{t^{2}}{2} \ln t-\frac{t^{2}}{4}\right)+t e^{-t}(t \ln t-t)$. Very cool...
14. Reduction of order requires that I set $y_{2}=v y_{1}$, where v is a function of t (not constant). In our case, since $y_{1}=t$ (it actually is a solution - I couldn't go on without checking it), we have $y_{2}=v t$. So, $y_{2}{ }^{\prime}=v+v^{\prime} t$ by product rule, and $y_{2}{ }^{\prime \prime}=v^{\prime}+v^{\prime}+v^{\prime \prime} t=2 v^{\prime}+v^{\prime \prime} t$. Let's substitute! $t^{2}\left(2 v^{\prime}+v^{\prime \prime} t\right)-t\left(v+v^{\prime} t\right)+t v=0$, which becomes $2 t^{2} v^{\prime}+t^{3} v^{\prime \prime}-t v-t^{2} v^{\prime}+t v=0$, or $t^{3} v^{\prime \prime}+t^{2} v^{\prime}=0$. Now, if we let $w=v^{\prime}$, then $w^{\prime}=v^{\prime \prime}$, so our equation becomes $t^{3} w^{\prime}+t^{2} w=0$. (This is where the reduction of order happens - it was a second-order DE, now it's a first-order DE.) This equation can be simplified to $t w^{\prime}+w=0$ and can be solved by separation of variables.
$t \frac{d w}{d t}+w=0 \Rightarrow t \frac{d w}{d t}=-w \Rightarrow \frac{d w}{w}=-\frac{1}{t} d t \Rightarrow \int \frac{d w}{w}=-\int \frac{d t}{t} \Rightarrow \ln |w|=-\ln |t| \Rightarrow w=\frac{1}{t}$. Since $w=v^{\prime}$, we can integrate this to find $v . \quad v=\int_{t}^{1} d t=\ln |t|$. Thus, our second (linearly independent) solution is $y_{2}=t \ln t$ (assuming t is non-negative and dropping absolute value). So, the general solution to the original DE is $y(t)=c_{1} t+c_{2} t \ln t$, although this was not requested on this problem.
15. Finding eigenvalues (and corresponding eigenvectors)... Our matrix is $\mathbf{A}=\left[\begin{array}{cc}2 & -1 \\ -6 & 1\end{array}\right]$. So the matrix $\mathbf{A}-\lambda \mathbf{I}=\left[\begin{array}{cc}2-\lambda & -1 \\ -6 & 1-\lambda\end{array}\right]$. We take the determinant of this and set it equal to zero: $(2-\lambda)(1-\lambda)-6=0$, or $\lambda^{2}-3 \lambda-4=0$, so $(\lambda-4)(\lambda+1)=0 \Rightarrow \lambda=-1,4$. These are the eigenvalues.
To find an eigenvector (for each eigenvalue), we solve the equation $\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right) \overrightarrow{\mathbf{v}}_{i}=\overrightarrow{\mathbf{0}}$. So, for $\lambda=-1$, we have $\left[\begin{array}{cc}3 & -1 \\ -6 & 2\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, or $\left[\begin{array}{cc|c}3 & -1 & 0 \\ -6 & 2 & 0\end{array}\right]$ in augmented matrix form. Putting this in RREF is quite quick, giving $\left[\begin{array}{cc|c}1 & -1 / 3 & 0 \\ 0 & 0 & 0\end{array}\right]$, so this means $v_{1}-\frac{1}{3} v_{2}=0$, or $v_{2}=3 v_{1}$. Thus, any matrix in the form $\left[\begin{array}{c}k \\ 3 k\end{array}\right]$ will work, and most people would pick something simple like $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ as the eigenvector to pair with the eigenvalue - 1. (Eigenvectors that correspond to an eigenvalue are not unique - there will always be an infinite number of possibilities.)

To find the second eigenvector, one that pairs with the eigenvalue 4, I do the same thing:
$\left[\begin{array}{ll}-2 & -1 \\ -6 & -3\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, or $\left[\begin{array}{ll|l}-2 & -1 & 0 \\ -6 & -3 & 0\end{array}\right]$ in augmented form. RREF is $\left[\begin{array}{cc|c}1 & 1 / 2 & 0 \\ 0 & 0 & 0\end{array}\right]$, so $v_{1}+\frac{1}{2} v_{2}=0$, or $v_{2}=-2 v_{1}$. I'd pick something like $\left[\begin{array}{c}1 \\ -2\end{array}\right]$, although anything in the form $\left[\begin{array}{c}k \\ -2 k\end{array}\right]$ would be acceptable.

