MA 232 – Straight – Spring 2008 **Solutions to Sample Test 2 Problems**

1. For the vector
$$\vec{\mathbf{x}} = [2, -1, 5, 0], \|\vec{\mathbf{x}}\| = \sqrt{2^2 + (-1)^2 + 5^2 + 0^2} = \sqrt{30}$$
.

2. $\mathbf{A} = \begin{bmatrix} 2 & -1 \\ 3 & 0 \\ 1 & -1 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} -3 & 0 & 2 & 0 \\ 1 & 4 & -1 & 2 \end{bmatrix} \text{ can be multiplied, since } \mathbf{A} \text{ is } 3x2 \text{ and } \mathbf{B} \text{ is } 2x4 \text{, so their}$ dimensions are compatible. The product $\mathbf{A}\mathbf{B}$ is therefore $3x4: \begin{bmatrix} -7 & -4 & 5 & -2 \\ -9 & 0 & 6 & 0 \\ -4 & -4 & 3 & -2 \end{bmatrix}$.

3.
$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$, so $\mathbf{A}^T = \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix}$ and $\mathbf{B}^T = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$. Further, $(\mathbf{A} + \mathbf{B})^T = \begin{bmatrix} 8 & 10 \\ 12 & 14 \end{bmatrix}^T$, which is $\begin{bmatrix} 8 & 12 \\ 10 & 14 \end{bmatrix}$. Now, $\mathbf{A}^T + \mathbf{B}^T = \begin{bmatrix} 8 & 12 \\ 10 & 14 \end{bmatrix}$ as well, so we have verified the desired result. *Note that this is not a proof!*

that this is not a proof!

4. The system in matrix form:
$$\begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -3 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ -2 \end{bmatrix}$$
. As an augmented matrix, the system would

appear as follows: $\begin{bmatrix} 1 & -3 & 2 & | & 4 \\ 2 & 1 & -3 & | & 1 \\ 1 & -1 & 1 & | & -2 \end{bmatrix}$. This system could easily be solved without a lot of extra time by

using the matrix features of your calculator – this could be expected on the exam.

5. The inverse of the matrix
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}$$
 is $\begin{bmatrix} -\frac{1}{3} & -\frac{1}{3} & 1 \\ \frac{2}{3} & -\frac{1}{3} & 0 \\ 0 & 1 & -1 \end{bmatrix}$. This can be found easily on a calculator.

You could be expected to verify it is the inverse by performing the product of A and its inverse to get the identity matrix I_3 . You could also be asked specifically to find an inverse by using Gauss-Jordan reduction, for which you'd have to show all ERO steps.

6. For the matrix
$$\mathbf{A} = \begin{bmatrix} 3 & 5 \\ 7 & 9 \end{bmatrix}$$
, the determinant is simply $(3)(9) - (5)(7) = 27 - 35 = -8$.

In matrix form, the equation is $\begin{bmatrix} 2 & -5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$, or $\mathbf{A}\mathbf{\vec{x}} = \mathbf{\vec{b}}$. Cramer's rule says we need to find the 7. determinant of **A**, which is $|\mathbf{A}| = 4 - (-15) = 19$. We also need two other matrices \mathbf{A}_1 and \mathbf{A}_2 , which are

found by replacing a column of **A** with the values from vector $\vec{\mathbf{b}}$. So, $\mathbf{A}_1 = \begin{bmatrix} 4 & -5 \\ -2 & 2 \end{bmatrix}$, and $|\mathbf{A}_1| = -2$.

Also,
$$\mathbf{A}_2 = \begin{bmatrix} 2 & 4 \\ 3 & -2 \end{bmatrix}$$
, and $|\mathbf{A}_2| = -16$. So, the solutions are $x = \frac{|\mathbf{A}_1|}{|\mathbf{A}|} = -\frac{2}{19}$ and $y = \frac{|\mathbf{A}_2|}{|\mathbf{A}|} = \frac{16}{19}$.

8. Augment the given matrix with the identity: $\begin{bmatrix} 1 & -2 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 0 & 1 & 0 \\ 0 & 0 & -1 & | & 0 & 0 & 1 \end{bmatrix}$, then use Gauss-Jordan reduction

to obtain RREF. This is made a littler simpler by the fact the we start with an upper triangular matrix. I'll start by negating the third row $(R_3^* = -R_3)$: $\begin{bmatrix} 1 & -2 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & -1 \end{bmatrix}$. Then, I'll do $R_2^* = R_2 + R_3$ to

 $get \begin{bmatrix} 1 & -2 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 0 & 1 & -1 \\ 0 & 0 & 1 & | & 0 & 0 & -1 \end{bmatrix}. \text{ Now, I'll do } R_1^* = R_1 + 2R_2 - 2R_3 \text{ (combining a couple of steps), which} \\
gives me \begin{bmatrix} 1 & 0 & 0 & | & 1 & 2 & 0 \\ 0 & 1 & 0 & | & 0 & -1 \\ 0 & 0 & 1 & | & 0 & 0 & -1 \end{bmatrix}. \text{ So the inverse } \mathbf{A}^{-1} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{bmatrix}.$

9. Ah – a third-order DE – but it's homogeneous! So we find the characteristic equation, which is $r^3 - 5r^2 + 17r - 13 = 0$. We don't have any really good ways to solve cubics, so it better be something we can work with pretty easily. I *notice* (because I check it out) that r = 1 gives me 0, so r = 1 is a characteristic root. So, I can divide out the polynomial, or use synthetic division, to determine the rest.

$$\begin{array}{r} r^{2} - 4r + 13 \\ r - 1 \overline{\smash{\big)}} \quad r^{3} - 5r^{2} + 17r - 13 \\ - \left(r^{3} - r^{2}\right) \\ - 4r^{2} + 17r \\ - \left(-4r^{2} + 4r\right) \\ 13r - 13 \\ 13r - 13 \end{array} \qquad 1 \overline{\smash{\big)} \underbrace{1 \quad -5 \quad 17 \quad -13}}_{1 \quad -4 \quad 13 \quad | \quad 0}$$

Ultimately, we can see that $r^3 - 5r^2 + 17r - 13 = (r-1)(r^2 - 4r + 13)$, so the characteristic roots are r = 1, and $r = 2 \pm 3i$, so $\alpha = 2$ and $\beta = 3$. Thus, my general solution is $y(t) = c_1 e^t + c_2 e^{2t} \cos 3t + c_3 e^{2t} \sin 3t$.

10. 7-lb object, so mass $m = \frac{7}{32}$ slugs. No friction, so damping constant b = 0. To find the spring constant, we know $k = \frac{7 \text{ lb}}{4 \text{ in}} = \frac{7 \text{ lb}}{\frac{1}{3} \text{ ft}} = 21 \frac{\text{lb}}{\text{ft}}$. So, our equation is $\frac{7}{32}\ddot{x} + 21x = 0$, since no forcing function is

given. Also, our initial conditions are specified: $x(0) = \frac{1}{4}$ (3 inches converted to ft), and $\dot{x}(0) = 1.5$.

To solve undamped, unforced oscillation, we calculate $\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{21}{\frac{7}{32}}} = \sqrt{96} = 4\sqrt{6}$. Thus, our

general solution is $x(t) = c_1 \cos 4\sqrt{6}t + c_2 \sin 4\sqrt{6}t$. So, $\dot{x}(t) = -c_1 4\sqrt{6} \sin 4\sqrt{6}t + c_2 4\sqrt{6} \cos 4\sqrt{6}t$ and we can find the parameters using the ICs. $\frac{1}{4} = c_1$ from the first IC, and from the second IC, we obtain

$$\frac{3}{2} = c_2 4\sqrt{6}, \text{ so } c_2 = \frac{3}{8\sqrt{6}} = \frac{\sqrt{6}}{16}. \text{ So my equation of motion is } x(t) = \frac{1}{4}\cos 4\sqrt{6}t + \frac{\sqrt{6}}{16}\sin 4\sqrt{6}t.$$

- 11. This is kind of like problem 9, only backwards. We're given two characteristic roots, and we know there must be three, since it's a third-order DE. Since complex roots appear in conjugate pairs, we know that all three characteristic roots will be -4, 2 i, and 2 + i. Using the two complex roots, we can quickly write a quadratic equation using the sum and product properties: for the general quadratic equation $ar^2 + br + c = 0$, the sum of the roots is $-\frac{b}{a}$ and the product of the roots is $\frac{c}{a}$. Since the sum of 2 i and 2 + i is 4, we know $-\frac{b}{a} = 4$. The product of 2 i and 2 + i is $4 i^2 = 5$, so $\frac{c}{a} = 5$. We can say that a = 1, b = -4, and c = 5, so a quadratic equation with roots of 2 i and 2 + i is simply $r^2 4r + 5 = 0$. Now, since the other characteristic root is -4, we can just multiply this quadratic by r + 4, which will yield $(r + 4)(r^2 4r + 5) = r^3 11r + 20 = 0$. Thus, our original DE could have been the equation y''' 11y' + 20y = 0. The solution to the DE (which could have been written at the start), is simply $y(t) = c_1e^{-4t} + c_2e^{2t}\cos t + c_2e^{2t}\sin t$.
- 12. First, put DE in standard form, since some methods (Variation of Parameters, in particular) will require it: $y''+2y'-3y = \frac{3}{2}\cos t + \frac{1}{2}t^2 - \frac{5}{2}t$. (My problem originally had a typo.)

Now, find y_h by solving y''+2y'-3y=0. Use characteristic roots: $r^2+2r-3=0 \Rightarrow (r+3)(r-1)=0$, so r=-3, 1. Thus, $y_h = c_1 e^{-3t} + c_2 e^t$.

Next, find y_p (I'll do this in two pieces, y_{p_1} and y_{p_2} .)

 $y_{p_1}: \text{I'm solving } y''+2y'-3y = \frac{3}{2}\cos t \text{ by undetermined coefficients, so let } y_{p_1} = A\cos t + B\sin t. \text{ This means } y_{p_1}'=-A\sin t + B\cos t \text{ and } y_{p_1}''=-A\cos t - B\sin t. \text{ Subbing these into our DE in the previous line gives (eventually) } (-A+2B-3A)\cos t + (-B-2A-3B)\sin t = \frac{3}{2}\cos t, \text{ so } -4A+2B = \frac{3}{2} \text{ and } -2A-4B=0, \text{ so } -10A=3 \Rightarrow A=-\frac{3}{10}, \text{ thus } B=\frac{3}{20}. \text{ So, } y_{p_1}=-\frac{3}{10}\cos t + \frac{3}{20}\sin t.$

I now find y_{p_2} by solving $y''+2y'-3y = \frac{1}{2}t^2 - \frac{5}{2}t$, again using undetermined coefficients. This time, I'll set $y_{p_2} = Ct^2 + Dt + E$ (since it's a poor habit to repeat use of unknowns within a problem). That means

$$y_{p_2}' = 2Ct + D$$
 and $y_{p_2}'' = 2C$. So (eventually) $(-3C)t^2 + (4C - 3D)t + (2C + 2D - 3E) = \frac{1}{2}t^2 - \frac{5}{2}t$,
meaning that $C = -\frac{1}{6}$, $D = \frac{11}{18}$, and $E = \frac{8}{27}$. We now have $y_{p_2} = -\frac{1}{6}t^2 + \frac{11}{18}t + \frac{8}{27}$.

So, $y_p = -\frac{3}{10}\cos t + \frac{3}{20}\sin t - \frac{1}{6}t^2 + \frac{11}{18}t + \frac{8}{27}$, and I'll cop out O by saying $y(t) = y_h + y_p$ is the final solution (you'll need to write it out on the exam).

13. We still need to find y_h first, to determine our basis $\{y_1, y_2\}$. So, let's solve y''+2y'+y=0. Characteristic equation is $r^2 + 2r + 1 = 0 \Rightarrow r = -1$ is the (repeated) characteristic root. The general y_h solution is $y_h = c_1 e^{-t} + c_2 t e^{-t}$, and our basis functions could be $y_1 = e^{-t}$ and $y_2 = t e^{-t}$. (We will also need to determine that $y_1' = -e^{-t}$ and $y_2' = -t e^{-t} + e^{-t}$, or $y_2' = e^{-t}(1-t)$.)

Now, on to variation of parameters. We want to look for a particular solution $y_p = v_1 y_1 + v_2 y_2$, subject to the auxiliary condition that $y_1 v_1' + y_2 v_2' = 0$ (the first equation in the resulting system). The second equation in the resulting system comes from the general work we did in class – which does <u>not</u> need to be shown, and is $y_1'v_1' + y_2'v_2' = f(t)$. From these (general) equations, we now write our (specific) system: $e^{-t}v_1' + te^{-t}v_2' = 0$ and (from the derivatives found above) $-e^{-t}v_1' + e^{-t}(1-t)v_2' = e^{-t} \ln t$. This system is pretty easy to solve algebraically (so I won't use the Cramer's rule formulas, involving the Wronskian). I can add the two equations as they are written and get $e^{-t}(v_2') = e^{-t} \ln t$, so $v_2' = \ln t$. Then I can sub this back in (to either equation) and get $v_1' = -t \ln t$. Now I have to integrate to find v_1 and v_2 . $v_1 = \int -t \ln t \, dt = -\frac{t^2}{2} \ln t - \frac{t^2}{4}$, using integration by parts. $v_2 = \int \ln t \, dt = t \ln t - t$, also by parts. Thus, my particular solution is $y_p = e^{-t} \left(-\frac{t^2}{2} \ln t - \frac{t^2}{4}\right) + te^{-t} (t \ln t - t)$.

Final answer to the original DE: $y(t) = c_1 e^{-t} + c_2 t e^{-t} + e^{-t} \left(-\frac{t^2}{2} \ln t - \frac{t^2}{4} \right) + t e^{-t} \left(t \ln t - t \right)$. Very cool...

14. Reduction of order requires that I set $y_2 = vy_1$, where *v* is a function of *t* (not constant). In our case, since $y_1 = t$ (it actually is a solution – I couldn't go on without checking it), we have $y_2 = vt$. So, $y_2' = v + v't$ by product rule, and $y_2'' = v' + v' + v''t = 2v' + v''t$. Let's substitute! $t^2(2v' + v''t) - t(v + v't) + tv = 0$, which becomes $2t^2v' + t^3v'' - tv - t^2v' + tv = 0$, or $t^3v'' + t^2v' = 0$. Now, if we let w = v', then w' = v'', so our equation becomes $t^3w' + t^2w = 0$. (*This is where the <u>reduction of order</u> happens – it was a second-order DE, <u>now</u> it's a first-order DE.) This equation can be simplified to tw' + w = 0 and can be solved by separation of variables. t\frac{dw}{dt} + w = 0 \Rightarrow t\frac{dw}{dt} = -w \Rightarrow \frac{dw}{w} = -\frac{1}{t}dt \Rightarrow \int \frac{dw}{w} = -\int \frac{dt}{t} \Rightarrow \ln|w| = -\ln|t| \Rightarrow w = \frac{1}{t}. Since w = v', we can integrate this to find v. v = \int \frac{1}{t}dt = \ln|t|. Thus, our second (linearly independent) solution is y_2 = t \ln t (assuming <i>t* is non-negative and dropping absolute value). So, the general solution to the original DE is $y(t) = c_1t + c_2t \ln t$, although this was not requested on this problem.

15. Finding eigenvalues (and corresponding eigenvectors)... Our matrix is $\mathbf{A} = \begin{bmatrix} 2 & -1 \\ -6 & 1 \end{bmatrix}$. So the matrix

 $\mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 2 - \lambda & -1 \\ -6 & 1 - \lambda \end{bmatrix}.$ We take the determinant of this and set it equal to zero: $(2 - \lambda)(1 - \lambda) - 6 = 0$, or $\lambda^2 - 3\lambda - 4 = 0$, so $(\lambda - 4)(\lambda + 1) = 0 \Rightarrow \lambda = -1, 4$. These are the eigenvalues. To find an eigenvector (for each eigenvalue), we solve the equation $(\mathbf{A} - \lambda_i \mathbf{I})\vec{\mathbf{v}}_i = \vec{\mathbf{0}}$. So, for $\lambda = -1$, we have $\begin{bmatrix} 3 & -1 \\ -6 & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$ or $\begin{bmatrix} 3 & -1 & 0 \\ -6 & 2 & 0 \end{bmatrix}$ in augmented matrix form. Putting this in RREF is quite quick, giving $\begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \end{bmatrix}$, so this means $v_1 - \frac{1}{3}v_2 = 0$, or $v_2 = 3v_1$. Thus, any matrix in the form $\begin{bmatrix} k \\ 3k \end{bmatrix}$

will work, and most people would pick something simple like $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ as the eigenvector to pair with the eigenvalue – 1. (*Eigenvectors that correspond to an eigenvalue are <u>not unique</u> – there will always be an infinite number of possibilities.)*

To find the second eigenvector, one that pairs with the eigenvalue 4, I do the same thing:

$$\begin{bmatrix} -2 & -1 \\ -6 & -3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ or } \begin{bmatrix} -2 & -1 & 0 \\ -6 & -3 & 0 \end{bmatrix} \text{ in augmented form. RREF is } \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}, \text{ so } v_1 + \frac{1}{2}v_2 = 0, \text{ or } v_2 = -2v_1.$$
 I'd pick something like $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, although anything in the form $\begin{bmatrix} k \\ -2k \end{bmatrix}$ would be acceptable.