MA 131 Calculus I - Spring 2008

Written Homework 2
Due by Friday, February 29, 2008 at the start of lecture.
Late homework is not accepted.
A particle is moving horizontally along a straight line. The line is marked (like a number line would be) with numerical values appropriately spaced along it.

At any time $t \geq 0$, the position of the particle on the marked line is given by $s(t)=t^{4}-13 t^{2}+24$.
a. What is the value of $s(0)$? Explain the physical interpretation of this result. [$\mathbf{3} \mathbf{~ p t s}, \mathbf{5} \mathbf{~ p t s}$]

The value of $s(0)$ is 24 . This is telling us that when we "begin the clock" for this experiment, the particle is at the location on the straight line marked with 24.

$$
\text { Numerical answer: } s(0)=24 \text {. }
$$

b. What is the value of $s(2)$? What is the average velocity of the particle in the first two seconds? Physically, explain what this means, and how you determined it. [$\mathbf{3} \mathbf{~ p t s , ~} \mathbf{5} \mathbf{~ p t s , 5} \mathbf{~ p t s]}$

The value of $s(2)$ is $16-52+24=-12$. This tells us that after two seconds, the particle is at the location on the line marked -12 , meaning the net movement of the particle in two seconds is to the left 36 units. From this, I can calculate the average velocity by dividing -36 by 2, which gives me -18 units per second.

More formally, this could be a slope formula calculation (difference quotient), as follows:
$\bar{v}=\frac{s(2)-s(0)}{2-0}=\frac{-12-24}{2}=\frac{-36}{2}=-18$. Units must then be added.
Numerical answers: $s(2)=-12$ and average velocity is -18 units per second.
c. Find a function $v(t)$ that can be used, for $t \geq 0$, to evaluate the velocity of the particle at time t. Explain how you determined this, and why. [5 pts, 5 pts]

I know that the velocity is the instantaneous rate of change of position, so $v(t)=s^{\prime}(t)$. I'll take the derivative of the function they gave me, and get $v(t)=4 t^{3}-26 t$.

Numerical answer: $v(t)=4 t^{3}-26 t$.
d. Are there any times when the particle is not moving? Explain. [$\mathbf{5} \mathbf{~ p t s , ~} \mathbf{5} \mathbf{~ p t s]}$

Any time when the particle is not moving would mean the velocity function (found above) has to be 0 . So, I will set $v(t)=0$ and see if there are any such times. $4 t^{3}-26 t=0$, which when we factor gives us $2 t\left(2 t^{2}-13\right)=0$, so $t=0$ is clearly one time (at the start), and also when
$2 t^{2}-13=0$, or $2 t^{2}=13 \Rightarrow t^{2}=\frac{13}{2} \Rightarrow t= \pm \sqrt{\frac{13}{2}}$. Now, from the original problem, we know that $t \geq 0$, so we can ignore the negative value.

Numerical answer: $t=0, \sqrt{\frac{13}{2}}$.
e. What is the speed of the particle after 2 seconds? How did you determine this? [$\mathbf{4} \mathbf{~ p t s , 5} \mathbf{~ p t s]}$

To find this, I can simply plug 2 in the function for velocity. If it comes out negative, I must make it positive, since speed can only be positive. So, $v(2)=4\left(2^{3}\right)-26(2)=32-52=-20$, and so my answer is 20 units per second.

Numerical answer: 20 units per second.

